
P2PS-NS2 Integration
P2P Discovery and Communication Within NS2

Ian J. Taylor

September 1, 2004

2

Contents

1 Introduction 1
1.1 SRSS Group Overview . 1
1.2 Creating P2P Discovery Simulations 2

1.2.1 The GAT . 3
1.2.2 The GAP Interface . 4

1.3 Pluggin in Java . 5
1.4 conclusion . 6

2 Installing the P2PS NS2 Toolkit 7
2.1 Installing the Protolib NS2 Binding 7
2.2 Installing the P2PS-NS2 Binding 9

2.2.1 Building NS2 . 11
2.2.2 What’s included in the P2PS-NS2 Binding? 23

2.3 Configuration . 23
2.4 conclusion . 24

3 Protolib 25
3.1 An overview of Protolib . 25

4 The PAI Interface 27

5 Java NS2 Agents 31
5.1 NS-2 Node JNI Integration . 31
5.2 NS2 Java Overview . 31
5.3 Invoking the Virtual Machine: the C++ to Java Bridge 33
5.4 Invoking Java Agents from NS2 Agents 34
5.5 Creating and Attaching a Java Agent 37

5.5.1 The TCL Side . 37
5.5.2 The Java Side . 39

5.6 Changing the Command Delimiter 40
5.6.1 The TCL Side . 40

i

ii CONTENTS

5.6.2 The Java Side . 42

5.7 Conclusion . 43

6 Using PAI within Java Agents 45

6.1 The Java PAI Overview . 45

6.2 The Java PAI interface . 46

6.2.1 Using the Java PAI Interface in Ns2 Java Objects . . . 48

6.3 Example 1: Sending Data From One Node to Another 49

6.3.1 The TCL Side . 49

6.3.2 The Java Side . 50

6.4 Example 2: Using the Trigger Mechansim 54

6.4.1 The TCL Side . 54

6.5 Example 3: Sending Data Using Multicast 56

6.5.1 The TCL Side . 56

6.5.2 The Java Side . 58

6.6 Conclusion . 61

7 P2PS (Peer-to-Peer Simplified) 63

7.1 Introduction . 63

7.2 P2PS Architecture . 64

7.2.1 Advertisements . 64

7.2.2 Queries . 66

7.2.3 Advertisement and Discovery 67

7.2.4 Rendezvous Peers . 68

7.2.5 Query Handling . 69

7.2.6 Endpoints . 70

7.2.7 Pipes and Endpoint Resolution 70

7.3 P2PS Implementation . 71

7.3.1 Peer . 73

7.3.2 Discovery Service . 73

7.3.3 Rendezvous Service . 74

7.3.4 Pipe Service . 75

7.3.5 Endpoint Resolver . 76

7.3.6 Configuration . 79

7.4 Conclusion . 82

7.5 Client/Server Example . 83

7.6 Advertisements . 86

7.7 Queries . 87

CONTENTS iii

8 Using P2PS within Java Agents 89
8.1 P2PS Interface to PAI . 89
8.2 Discovering NS2 Nodes Using P2PS 90

8.2.1 The TCL Side . 90
8.2.2 The Java Side: The Server 92
8.2.3 The Java Side: The Client 100

8.3 Conclusion . 116

iv CONTENTS

Chapter 1

Introduction

This chapter gives a very brief background into the motivation behind this
work and describes the core nature of the network that the NS2 simulations
that will be performed will be run on. Here, a brief overview of the archi-
tecture employed for this integration at concept is provided along with a
description of how the various parts tie in together.

1.1 SRSS Group Overview

The key focus for the Scalable, Robust Self-Organizing Sensor (SRSS) sys-
tems group in NRL is to investigate and model, using network simulation
tools, lightweight network application discovery mechanisms suitable for ap-
plication in mobile sensor systems. The SRSS systems in question are envi-
sioned to leverage self-organizing computer communication networks based
on Mobile Ad-hoc Networking (MANET) routing protocols which operate
using wireless communication links and have no centralized administration
or control.

Each node in a MANET network participates in the discovery of a route
and therefore low-level routing protocols are paramount to the overall be-
haviour. However, it is anticipated that middleware network services beyond
routing will be required to facilitate autonomous self-organization of sensors
and their various related data collection, processing, and reporting functions.

The actual sensors are relatively simple devices that consist of a CPU,
a data collection mechanism e.g. ADC convertor for audio, images etc and
a wireless network card for communication across the MANET network to
other participating nodes in the community.

The complexity of middleware approaches being considered and examined
range from utilization of simple, organic network services which might be pro-

1

2 CHAPTER 1. INTRODUCTION

Main Processor
Sensor Apps/Agents/etc

Operating System
Networking Stack

Wireless
interface(s)

Sensor
Device(s)

Figure 1.1: The components of a wireless sensor within an SRSS network.

vided by the network layer (network name/address resolution, IP multicast,
ANYCAST) to potentially heavy-weight, highly stateful, complex agent-
based architectures. The focus of this task will be lightweight (minimally
complex) middleware discovery mechanisms and services which can facilitate
publish and subscribe relationships among a set of sensor application peers
participating in an SRSS network. The context of highly dynamic, possibly
mobile, networking will place special challenges on such protocols ability to
perform peer neighbor and service discovery and to maintain that informa-
tion in the face of node outages and/or relocation within the network.

1.2 Creating P2P Discovery Simulations

It is paramount to the SRSS project that they construct a reusable archi-
tecture for testing out various discovery mechanisms employed by different
middleware infrastructures. The architecture therefore contains an abstract
P2P interface, which has been developed at Cardiff University within the
Gridlab [5] and GridOneD projects [6], called the GAP. This interface is pro-
vides access to core P2P services, which were extracted from examining a
number of P2P applications and extracting the functionality that most ap-
plication need and was motivated from the GAT interface. These interfaces

1.2. CREATING P2P DISCOVERY SIMULATIONS 3

Network
Wireless (or wired..)

NS-2
MANET simulations

Protolib (NRL)

Protolib Application Interface (PAI)

P2P Middleware
(discovery, communication mechanisms)

Application – dynamic self
organizing sensor nets

Figure 1.2: An overview of the P2PS-NS2 software stack

are described in the next two sections.
The resulting architecture is shown in Figure 1.2. The application (i.e.

mobile sensors) should be able to ulitilise the discovery mechanisms from
a P2P middleware layer, which interfaces through to Protolib via a generic
interface, called PAI. This enables the resulting application to be deployed
in a networked or an NS-2 simulation environment.

Protolib is a low-level communication, event dispatching and timing li-
brary that can be used on top of a network or within the NS-2 network
simulator environment.

NS-2 [1] is a discrete event simulator that supports the link layer up-
wards on the OSI stack i.e. the network, transport, session, presentation and
application layer, respectively. It can support both wired and wireless sim-
ulations and works on most platforms and therefore satisfies the main focus
of the project, that is, to test out various P2P discovery and communication
mechanisms within various network extremities.

1.2.1 The GAT

The GAT interface provides a generalised collection of calls to shield Grid ap-
plications from implementation details of the underlying Grid middleware,
and is being developed in the European GridLab project [5]. The GAT

4 CHAPTER 1. INTRODUCTION

utilises adaptors that provide the specific bindings from the GAT interface
to the underlying mechanisms that implement this functionality. For ex-
ample, a move file command may have many GAT adaptors that implement
this functionality depending upon the particular execution environment used,
such as GridFTP, JXTA pipes or a local cp command.

GAT may be referred to as upperware, which distinguishes it from mid-
dleware (which provides the actual implementation of the underlying func-
tionality). Until recently, application developers typically interact with the
middleware directly. However, it is becoming increasingly apparent that this
transition from one type of middleware to another is not a trivial one. Using
interfaces like GAT, migrating from one middleware environment to another
is easier, and typically achieved by setting an environment variable. This is
illustrated in the next section where we have implemented an adaptor to bind
to P2P middleware for operating in P2P environments as well as the Grid
environments supported directly by GridLab. This means that exactly the
same Triana implementation can be used within both environments trans-
parently.

1.2.2 The GAP Interface

The Grid Application Prototype Interface (GAP Interface) is a generic appli-
cation interface providing a subset of the GAT functionality. It is middleware
independent, with bindings provided for different Grid middleware such as
JXTA and Web Services, as illustrated in Figure 1.3.

Part of the motivation behind the GAP Interface is as a stopgap to en-
able us to develop distribution mechanisms within Triana while the GridLab
GAT is being developed. When the GridLab GAT becomes available the
GAT-API will replace the GAP Interface within Triana and should enable
Triana to make use of the advanced security, logging and other GridLab ser-
vices. However, the GAP Interface will live on, both as a simple interface
for prototyping Grid and P2P applications, and as an adaptor within the
GridLab GAT architecture providing various discovery and communication
capabilities. Currently there are three GAP bindings implemented:

JXTA - The original GAP Interface binding was to JXTA [4]. JXTA is a set
of protocols for Peer-to-Peer discovery and communication originally
developed by Sun Microsystems. Although we achieved some initial
success with JXTA, we have since had problems with the speed and
reliability of the JXTA binding.

P2PS - a lightweight Peer-to-Peer middleware. See Chapt. 7.

1.3. PLUGGIN IN JAVA 5

Application
(e.g. Triana)

GAP Interface

JXTA P2PS Web Services

UDDI
SOAP

JXTA
Discovery JXTA

Pipes

Figure 1.3: The GAP Interface provides a middleware independent interface
for developing Grid applications

Web Services - The most recent GAP binding allows applications to dis-
cover and interact with Web Services – using the UDDI registry [12]
and the Web Service Invocation Framework (WSIF) [13].

1.3 Pluggin in Java

The work described in this manual implements a Java framework for plug-
ging in Java middleware, such as the GAP and bindings, such as Jxta and
P2PS. The protoype implementation here interfaces directly to the P2PS
middleware, which is described in detail in Chapt 7. This interfaces via the
PAI interface (described in Chapt. 4) to use the Protolib application toolkit.

Since the middleware is written in Java, a JNI bridge is needed in order
to map between the C++ NS2 objects and the associated Java objects. This
bridging mechanism is required at both the input to the middleware and
at its lower communication layers. The input to the middleware allows the
C++ objects to access the Java functionality and is achieved by creating
a Java Virtual Machine (JVM) within the C++ application. The lower
communication levels of the middleware must then map to the PAI and
Protolib C++ libraries so this communication layer must also be interface

6 CHAPTER 1. INTRODUCTION

Network NS-2

Protolib (NRL)

Protolib Appliation Interface (PAI)

JNI

GAP with P2PS Binding

JNI

Application – dynamic self
organizing sensor nets

Figure 1.4: The SRTSS architecture showing the JNI interface to the Java
objects that can be included within the NS2 simulations.

using JNI. The resulting arhictecture illustrating this is shown in Figure 1.4.

1.4 conclusion

In this chapter a brief motivation and background into the work described
in this manual is given. The architecture is given and discussed in context
to the Java middleware that is employed within the software stack utilised
within this project.

Chapter 2

Installing the P2PS NS2
Toolkit

This chapter describes the installation of core packages needed in order to
get the P2PS-NS2 toolkit operating. The core packages needed are:

1. Protolib: a core package for adding timers and UDP communication
within NS2 [9]

2. P2PS-NS2: this includes a customized version of the P2PS middle-
ware [8] and the PAI interface to Protolib, described in Chapt. 4 and
the JNI interface for attaching Java Objects to NS2 nodes.

2.1 Installing the Protolib NS2 Binding

With the Protolib release there is a supplied Makefile for NS version 2.29
and a README.TXT file in the ns directory. The read me file describes the
steps involved in installing protolob into NS2. They are as follows:

To use PROTOLIB with ns, you will need to at least
modify the ns "Makefile.in" to build the PROTOLIB
code into ns. To do this, use the following steps:

1) Make a link to the PROTOLIB source directory in the
ns source directory. (I use "protolib" for the link
name in the steps below).

2) Provide paths to the PROTOLIB include files by setting

PROTOLIB_INCLUDES = -Iprotolib/common -Iprotolib/ns

7

8 CHAPTER 2. INSTALLING THE P2PS NS2 TOOLKIT

and adding $(PROTOLIB_INCLUDES) to the "INCLUDES" macro
already defined in the ns "Makefile.in"

3) Define compile-time CFLAGS needed for the PROTOLIB code
by setting

PROTOLIB_FLAGS = -DUNIX -DNS2 -DPROTO_DEBUG -DHAVE_ASSERT

and adding $(PROTOLIB_FLAGS) to the "CFLAGS" macro already
defined in the ns "Makefile.in"

4) Add the list of PROTOLIB object files to get compiled and linked
during the ns build. For example, set

OBJ_PROTOLIB_CPP = \
protolib/ns/nsProtoAgent.o protolib/common/protoSim.o\
protolib/common/networkAddress.o \
protolib/common/protocolTimer.o \
protolib/common/debug.o

and then add $(OBJ_PROTOLIB_CPP) to the list in the "OBJ"
macro already defined in the ns "Makefile.in"

Note: "nsProtoAgent.cpp" contains a starter ns agent which uses the
PROTOLIB ProtocolTimer and UdpSocket classes.

5) Add the the rule for .cpp files to ns-2 "Makefile.in":

.cpp.o:
@rm -f $@
$(CC) -c $(CFLAGS) $(INCLUDES) -o $@ $*.cpp

and add to the ns-2 Makefile.in "SRC" macro definition:

$(OBJ_CPP:.o=.cpp)

6) Run "./configure" in the ns source directory to create a new
Makefile and then type "make ns" to rebuild ns.

Brian Adamson
<mailto://adamson@itd.nrl.navy.mil>
18 December 2001

The first thing to take note is that Protolib is basically a plug-in for
NS 2 to allowing a trigger mechanism, based on timers and a UDP socket
implementation for passing data between NS2 nodes. Therefore, to install

2.2. INSTALLING THE P2PS-NS2 BINDING 9

this plug-in, you must recompile NS2. It is therefore advisable to build NS2
from scratch then add the protolib plug-in.

2.2 Installing the P2PS-NS2 Binding

The P2PS-NS2 toolkit follows a similar installation path to Protolib but in-
stead of using a softlink, it uses environment variables within the Makefile.in
file to point to the installation directory for the source code for P2PS-NS2.
The installation is provided below and follows a similar style to the Protolib
procedure for simplicity. This file can be found in the src/build/ns2PAIConfig
directory within the P2PS-NS2 source tree.

To install P2PS-NS2 (and PAI) you need to install Protolib
and modify the ns "Makefile.in" to build the P2PS-NS2
code into ns (there is a Makefile.in file for the ns2.26
release given in this directory). To do this, use the
following steps:

1) Install Protolib

2) Set a PAI environment variable to point to your installation
directory for P2PS-NS2 (built on top of PAI) and create
pointers to the various subdirectories for the source, as follows:

PAI = ../../../Apps/nrl/p2ps-ns2/src/pai

PAI_CORE = $(PAI)/core
PAI_FACTORY = $(PAI)/factory
PAI_IMPL = $(PAI)/impl
PAI_JNI = $(PAI)/jni

2) Provide paths to the P2PS-NS2 include files by setting

PAI_INCLUDES = -I$(JAVA_HOME)/include -I$(PAI_CORE)
-I$(PAI_FACTORY) -I$(PAI_IMPL) -I$(PAI_IMPL)/ns -I$(PAI_JNI)

and adding $(PAI_INCLUDES) to the "INCLUDES" macro
already defined in the ns "Makefile.in"

3) Add the list of P2PS-NS2 object files to get compiled and linked
during the ns build. For example, set

OBJ_PAI_CPP = $(PAI_CORE)/LinkedList.o $(PAI_IMPL)/PAIDispatcher.o \
$(PAI_IMPL)/PAIEngine.o $(PAI_FACTORY)/PAIFactory.o \
$(PAI_CORE)/PAIMultipleListener.o $(PAI_IMPL)/PAISocket.o \
$(PAI_IMPL)/PAITimer.o $(PAI_IMPL)/ns/PAINS2UDPSocket.o \

10 CHAPTER 2. INSTALLING THE P2PS NS2 TOOLKIT

$(PAI_IMPL)/ns/PAINS2Timer.o $(PAI_CORE)/PAIListener.o \
$(PAI_CORE)/PAI.o $(PAI_IMPL)/ns/PAIAgent.o\
$(PAI_IMPL)/ns/PAIBroker.o\
$(PAI_FACTORY)/PAIEnvironment.o\
$(PAI_JNI)/JVMRef.o $(PAI_IMPL)/ns/JavaAgent.o\
$(PAI_JNI)/JavaPAI.o $(PAI_JNI)/JavaEnv.o

and then add $(OBJ_PAI_CPP) to the list in the "OBJ"
macro already defined in the ns "Makefile.in"

Note: "JavaAgent.cpp" contains the ns agent for
integrating Java objects.

4) Add the rule for .cpp files to ns-2 "Makefile.in":

.cpp.o:
@rm -f $@
$(CC) -c $(CFLAGS) $(INCLUDES) -o $@ $*.cpp

and add to the ns-2 Makefile.in "SRC" macro definition:

$(OBJ_CPP:.o=.cpp)

(note this has already been done - if you have installed
protolib correctly).

5) Create a shared library - define compile-time SHARED
Library flags and libraries needed for your platform to
create a shared library (this is needed for the JNI binding).
On my Mac OS 10.x, these are defined as follows:

PAI_LIB = -framework JavaVM
PAI_SHARED_LDFLAGS = $(SHARED)

and adding $(PAI_LIB) to the "LIB" macro already
defined in the ns "Makefile.in"

and adding a new rule to make the shared library

libnspai.dyn: $(OBJ) common/tclAppInit.o
$(LINK) $(PAI_SHARED_LDFLAGS) -o $@ \
common/tclAppInit.o $(OBJ) $(LIB)

6) Run "./configure" in the ns source directory to create a new
Makefile

7) Type "make ns" to rebuild ns - this creates the static library

2.2. INSTALLING THE P2PS-NS2 BINDING 11

8) Type "make libnspai.dyn" to rebuild the dynamic library
needed for the installation of the JNI frameworks.

2.2.1 Building NS2

The resulting NS2 Makefile should therefore including both the Protolib and
P2PS dependencies. A complete version of my Makefile, used to build NS 2
version 2.26 on an Apple Mac, is provided below:

Copyright (c) 1994, 1995, 1996
The Regents of the University of California. All rights reserved.
#
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that: (1) source code distributions
retain the above copyright notice and this paragraph in its entirety, (2)
distributions including binary code include the above copyright notice and
this paragraph in its entirety in the documentation or other materials
provided with the distribution, and (3) all advertising materials mentioning
features or use of this software display the following acknowledgement:
‘‘This product includes software developed by the University of California,
Lawrence Berkeley Laboratory and its contributors.’’ Neither the name of
the University nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior
written permission.
THIS SOFTWARE IS PROVIDED ‘‘AS IS’’ AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
#
@(#) $Header: 2002/10/09 15:34:11

#
Various configurable paths (remember to edit Makefile.in, not Makefile)
#

Top level hierarchy
prefix = @prefix@
Pathname of directory to install the binary
BINDEST = @prefix@/bin
Pathname of directory to install the man page
MANDEST = @prefix@/man

BLANK = # make a blank space. DO NOT add anything to this line

The following will be redefined under Windows (see WIN32 lable below)
CC = @CC@
CPP = @CXX@
LINK = $(CPP)
MKDEP = ./conf/mkdep

12 CHAPTER 2. INSTALLING THE P2PS NS2 TOOLKIT

TCLSH = @V_TCLSH@
TCL2C = @V_TCL2CPP@
AR = ar rc $(BLANK)

RANLIB = @V_RANLIB@
INSTALL = @INSTALL@
LN = ln
TEST = test
RM = rm -f
MV = mv
PERL = @PERL@

for diffusion
#DIFF_INCLUDES = "./diffusion3/main ./diffusion3/lib
./diffusion3/nr ./diffusion3/ns"

Flags for creating a shared library - IANS Additions

SHARED = -dynamiclib -lresolv

CCOPT = @V_CCOPT@
STATIC = @V_STATIC@
LDFLAGS = $(STATIC)
LDOUT = -o $(BLANK)

########################### Protolib Section #######################

PROTOLIB = ../../protolib

PROTOLIB_INCLUDES = -I$(PROTOLIB)/common -I$(PROTOLIB)/ns
PROTOLIB_FLAGS = -DUNIX -DNS2 -DPROTO_DEBUG -DHAVE_ASSERT

OBJ_PROTOLIB_CPP = \
$(PROTOLIB)/ns/nsProtoAgent.o $(PROTOLIB)/common/protoSim.o \
$(PROTOLIB)/common/networkAddress.o \
$(PROTOLIB)/common/protocolTimer.o \
$(PROTOLIB)/common/debug.o

############################## PAI Section ########################

PAI = ../../../Apps/nrl/p2ps-ns2/src/pai

PAI_CORE = $(PAI)/core
PAI_FACTORY = $(PAI)/factory
PAI_IMPL = $(PAI)/impl
PAI_JNI = $(PAI)/jni

#Note just include the ns implementation here - NOT the net directory

2.2. INSTALLING THE P2PS-NS2 BINDING 13

PAI_LIB = -framework JavaVM
PAI_SHARED_LDFLAGS = $(SHARED)

PAI_INCLUDES = -I$(JAVA_HOME)/include -I$(PAI_CORE)
-I$(PAI_FACTORY) -I$(PAI_IMPL) -I$(PAI_IMPL)/ns -I$(PAI_JNI)

OBJ_PAI_CPP = $(PAI_CORE)/LinkedList.o $(PAI_IMPL)/PAIDispatcher.o \
$(PAI_IMPL)/PAIEngine.o $(PAI_FACTORY)/PAIFactory.o \
$(PAI_CORE)/PAIMultipleListener.o $(PAI_IMPL)/PAISocket.o \
$(PAI_IMPL)/PAITimer.o $(PAI_IMPL)/ns/PAINS2UDPSocket.o \
$(PAI_IMPL)/ns/PAINS2Timer.o $(PAI_CORE)/PAIListener.o \
$(PAI_CORE)/PAI.o $(PAI_IMPL)/ns/PAIAgent.o\
$(PAI_IMPL)/ns/PAIBroker.o\
$(PAI_FACTORY)/PAIEnvironment.o\
$(PAI_JNI)/JVMRef.o $(PAI_IMPL)/ns/JavaAgent.o\
$(PAI_JNI)/JavaPAI.o $(PAI_JNI)/JavaEnv.o

######################## END PAI Section ############################

DEFINE = -DTCP_DELAY_BIND_ALL -DNO_TK @V_DEFINE@
@V_DEFINES@ @DEFS@ -DNS_DIFFUSION -DSMAC_NO_SYNC
-DSTL_NAMESPACE=@STL_NAMESPACE@ -DUSE_SINGLE_ADDRESS_SPACE

INCLUDES = \
$(PROTOLIB_INCLUDES) \
$(PAI_INCLUDES) \
-I. @V_INCLUDE_X11@ \
@V_INCLUDES@ \
-I./tcp -I./common -I./link -I./queue \
-I./adc -I./apps -I./mac -I./mobile -I./trace \
-I./routing -I./tools -I./classifier -I./mcast \
-I./diffusion3/lib/main -I./diffusion3/lib \
-I./diffusion3/lib/nr -I./diffusion3/ns \
-I./diffusion3/diffusion -I./asim/ -I./qs

LIB = \
@V_LIBS@ \
@V_LIB_X11@ \
@V_LIB@ \
$(PAI_LIB) \
-lm @LIBS@
-L@libdir@ \

CFLAGS = $(CCOPT) $(DEFINE) $(PROTOLIB_FLAGS) $(PAI_FLAGS)

Explicitly define compilation rules since SunOS 4’s make doesn’t like gcc.
Also, gcc does not remove the .o before forking ’as’, which can be a

14 CHAPTER 2. INSTALLING THE P2PS NS2 TOOLKIT

problem if you don’t own the file but can write to the directory.
.SUFFIXES: .cc # $(.SUFFIXES)

.cc.o:
@rm -f $@
$(CPP) -c $(CFLAGS) $(INCLUDES) -o $@ $*.cc

.c.o:
@rm -f $@
$(CC) -c $(CFLAGS) $(INCLUDES) -o $@ $*.c

GEN_DIR = gen/
LIB_DIR = lib/
NS = ns
NSX = nsx
NSE = nse

To allow conf/makefile.win overwrite this macro
We will set these two macros to empty in conf/makefile.win
since VC6.0
does not seem to support the STL in gcc 2.8 and up.
OBJ_STL = diffusion3/lib/nr/nr.o diffusion3/lib/dr.o \
diffusion3/ns/diffagent.o diffusion3/ns/diffrtg.o \
diffusion3/ns/difftimer.o \
diffusion3/diffusion/diffusion.o \
diffusion3/lib/main/attrs.o \
diffusion3/lib/main/iodev.o \
diffusion3/lib/main/timers.o \
diffusion3/lib/main/events.o \
diffusion3/lib/main/message.o \
diffusion3/lib/main/stats.o \
diffusion3/lib/main/tools.o \
diffusion3/lib/drivers/rpc_stats.o \
diffusion3/apps/sysfilters/gradient.o \
diffusion3/apps/sysfilters/log.o \
diffusion3/apps/sysfilters/tag.o \
diffusion3/apps/sysfilters/srcrt.o \
diffusion3/lib/diffapp.o \
diffusion3/apps/pingapp/ping_sender.o \
diffusion3/apps/pingapp/ping_receiver.o \
diffusion3/apps/pingapp/ping_common.o \
diffusion3/apps/pingapp/push_receiver.o \
diffusion3/apps/pingapp/push_sender.o \
diffusion3/apps/gear/geo-attr.o \
diffusion3/apps/gear/geo-routing.o \
diffusion3/apps/gear/geo-tools.o \
nix/hdr_nv.o nix/classifier-nix.o \
nix/nixnode.o nix/nixvec.o \

2.2. INSTALLING THE P2PS-NS2 BINDING 15

nix/nixroute.o

NS_TCL_LIB_STL = tcl/lib/ns-diffusion.tcl

WIN32: uncomment the following line to include specific make for VC++
!include <conf/makefile.win>

OBJ_CC = \
tools/random.o tools/rng.o tools/ranvar.o common/misc.o\
common/timer-handler.o \
common/scheduler.o common/object.o common/packet.o \
common/ip.o routing/route.o common/connector.o common/ttl.o \
trace/trace.o trace/trace-ip.o \
classifier/classifier.o classifier/classifier-addr.o \
classifier/classifier-hash.o \
classifier/classifier-virtual.o \
classifier/classifier-mcast.o \
classifier/classifier-bst.o \
classifier/classifier-mpath.o mcast/replicator.o \
classifier/classifier-mac.o \
classifier/classifier-qs.o \
classifier/classifier-port.o src_rtg/classifier-sr.o \

src_rtg/sragent.o src_rtg/hdr_src.o adc/ump.o \
qs/qsagent.o qs/hdr_qs.o \
apps/app.o apps/telnet.o tcp/tcplib-telnet.o \
tools/trafgen.o trace/traffictrace.o tools/pareto.o \
tools/expoo.o tools/cbr_traffic.o \
adc/tbf.o adc/resv.o adc/sa.o tcp/saack.o \
tools/measuremod.o adc/estimator.o adc/adc.o adc/ms-adc.o \
adc/timewindow-est.o adc/acto-adc.o \

adc/pointsample-est.o adc/salink.o adc/actp-adc.o \
adc/hb-adc.o adc/expavg-est.o\
adc/param-adc.o adc/null-estimator.o \
adc/adaptive-receiver.o apps/vatrcvr.o adc/consrcvr.o \
common/agent.o common/message.o apps/udp.o \
common/session-rtp.o apps/rtp.o tcp/rtcp.o \
common/ivs.o \
tcp/tcp.o tcp/tcp-sink.o tcp/tcp-reno.o \
tcp/tcp-newreno.o \
tcp/tcp-vegas.o tcp/tcp-rbp.o tcp/tcp-full.o tcp/rq.o \
baytcp/tcp-full-bay.o baytcp/ftpc.o baytcp/ftps.o \
tcp/scoreboard.o tcp/scoreboard-rq.o tcp/tcp-sack1.o tcp/tcp-fack.o \
tcp/tcp-asym.o tcp/tcp-asym-sink.o tcp/tcp-fs.o \
tcp/tcp-asym-fs.o tcp/tcp-qs.o \
tcp/tcp-int.o tcp/chost.o tcp/tcp-session.o \
tcp/nilist.o \
tools/integrator.o tools/queue-monitor.o \
tools/flowmon.o tools/loss-monitor.o \
queue/queue.o queue/drop-tail.o \

16 CHAPTER 2. INSTALLING THE P2PS NS2 TOOLKIT

adc/simple-intserv-sched.o queue/red.o \
queue/semantic-packetqueue.o queue/semantic-red.o \
tcp/ack-recons.o \
queue/sfq.o queue/fq.o queue/drr.o queue/srr.o queue/cbq.o \
queue/jobs.o queue/marker.o queue/demarker.o \
link/hackloss.o queue/errmodel.o queue/fec.o\
link/delay.o tcp/snoop.o \
gaf/gaf.o \
link/dynalink.o routing/rtProtoDV.o common/net-interface.o \
mcast/ctrMcast.o mcast/mcast_ctrl.o mcast/srm.o \
common/sessionhelper.o queue/delaymodel.o \
mcast/srm-ssm.o mcast/srm-topo.o \
apps/mftp.o apps/mftp_snd.o apps/mftp_rcv.o \
apps/codeword.o \
routing/alloc-address.o routing/address.o \
$(LIB_DIR)int.Vec.o $(LIB_DIR)int.RVec.o \
$(LIB_DIR)dmalloc_support.o \
webcache/http.o webcache/tcp-simple.o webcache/pagepool.o \
webcache/inval-agent.o webcache/tcpapp.o webcache/http-aux.o \
webcache/mcache.o webcache/webtraf.o \
webcache/webserver.o \
webcache/logweb.o \
empweb/empweb.o \
empweb/empftp.o \
realaudio/realaudio.o \
mac/lanRouter.o classifier/filter.o \
common/pkt-counter.o \
common/Decapsulator.o common/Encapsulator.o \
common/encap.o \
mac/channel.o mac/mac.o mac/ll.o mac/mac-802_11.o \
mac/mac-802_3.o mac/mac-tdma.o mac/smac.o \
mobile/mip.o mobile/mip-reg.o mobile/gridkeeper.o \
mobile/propagation.o mobile/tworayground.o \
mobile/antenna.o mobile/omni-antenna.o \
mobile/shadowing.o mobile/shadowing-vis.o mobile/dumb-agent.o \
common/bi-connector.o common/node.o \
common/mobilenode.o \
mac/arp.o mobile/god.o mobile/dem.o \
mobile/topography.o mobile/modulation.o \
queue/priqueue.o queue/dsr-priqueue.o \
mac/phy.o mac/wired-phy.o mac/wireless-phy.o \
mac/mac-timers.o trace/cmu-trace.o mac/varp.o \
dsdv/dsdv.o dsdv/rtable.o queue/rtqueue.o \
routing/rttable.o \
imep/imep.o imep/dest_queue.o imep/imep_api.o \
imep/imep_rt.o imep/rxmit_queue.o imep/imep_timers.o \
imep/imep_util.o imep/imep_io.o \
tora/tora.o tora/tora_api.o tora/tora_dest.o \
tora/tora_io.o tora/tora_logs.o tora/tora_neighbor.o \

2.2. INSTALLING THE P2PS-NS2 BINDING 17

dsr/dsragent.o dsr/hdr_sr.o dsr/mobicache.o dsr/path.o \
dsr/requesttable.o dsr/routecache.o dsr/add_sr.o \
dsr/dsr_proto.o dsr/flowstruct.o dsr/linkcache.o \
dsr/simplecache.o dsr/sr_forwarder.o \
aodv/aodv_logs.o aodv/aodv.o \
aodv/aodv_rtable.o aodv/aodv_rqueue.o \
common/ns-process.o \
satellite/satgeometry.o satellite/sathandoff.o \
satellite/satlink.o satellite/satnode.o \
satellite/satposition.o satellite/satroute.o \
satellite/sattrace.o \
rap/raplist.o rap/rap.o rap/media-app.o rap/utilities.o \
common/fsm.o tcp/tcp-abs.o \
diffusion/diffusion.o diffusion/diff_rate.o diffusion/diff_prob.o \
diffusion/diff_sink.o diffusion/flooding.o diffusion/omni_mcast.o \
diffusion/hash_table.o diffusion/routing_table.o diffusion/iflist.o \
tcp/tfrc.o tcp/tfrc-sink.o mobile/energy-model.o apps/ping.o tcp/tcp-rfc793edu.o \
queue/rio.o queue/semantic-rio.o tcp/tcp-sack-rh.o tcp/scoreboard-rh.o \
plm/loss-monitor-plm.o plm/cbr-traffic-PP.o \
linkstate/hdr-ls.o \
mpls/classifier-addr-mpls.o mpls/ldp.o mpls/mpls-module.o \
routing/rtmodule.o classifier/classifier-hier.o \
routing/addr-params.o \
routealgo/rnode.o \
routealgo/bfs.o \
routealgo/rbitmap.o \
routealgo/rlookup.o \
routealgo/routealgo.o \
diffserv/dsred.o diffserv/dsredq.o \
diffserv/dsEdge.o diffserv/dsCore.o \
diffserv/dsPolicy.o diffserv/ew.o\
queue/red-pd.o queue/pi.o queue/vq.o queue/rem.o \
queue/gk.o \
pushback/rate-limit.o pushback/rate-limit-strategy.o \
pushback/ident-tree.o pushback/agg-spec.o \
pushback/logging-data-struct.o \
pushback/rate-estimator.o \
pushback/pushback-queue.o pushback/pushback.o \
common/parentnode.o trace/basetrace.o \
common/simulator.o asim/asim.o \
common/scheduler-map.o common/splay-scheduler.o \
linkstate/ls.o linkstate/rtProtoLS.o \
pgm/classifier-pgm.o pgm/pgm-agent.o pgm/pgm-sender.o \
pgm/pgm-receiver.o mcast/rcvbuf.o \
mcast/classifier-lms.o mcast/lms-agent.o mcast/lms-receiver.o \
mcast/lms-sender.o \
@V_STLOBJ@

18 CHAPTER 2. INSTALLING THE P2PS NS2 TOOLKIT

don’t allow comments to follow continuation lines

mac-csma.o mac-multihop.o\
sensor-nets/landmark.o mac-simple-wireless.o \
sensor-nets/tags.o sensor-nets/sensor-query.o \
sensor-nets/flood-agent.o \

what was here before is now in emulate/
OBJ_C =

OBJ_COMPAT = $(OBJ_GETOPT) common/win32.o
#XXX compat/win32x.o compat/tkConsole.o

OBJ_EMULATE_CC = \
emulate/net-ip.o \
emulate/net.o \
emulate/tap.o \
emulate/ether.o \
emulate/internet.o \
emulate/ping_responder.o \
emulate/arp.o \
emulate/icmp.o \
emulate/net-pcap.o \
emulate/nat.o \
emulate/iptap.o \
emulate/tcptap.o

OBJ_EMULATE_C = \
emulate/inet.o

OBJ_GEN = $(GEN_DIR)version.o $(GEN_DIR)ns_tcl.o $(GEN_DIR)ptypes.o

SRC = $(OBJ_C:.o=.c) $(OBJ_CC:.o=.cc) \
$(OBJ_EMULATE_C:.o=.c) $(OBJ_EMULATE_CC:.o=.cc) \
$(OBJ_CPP:.o=.cpp) \
common/tclAppInit.cc common/tkAppInit.cc

OBJ = $(OBJ_C) $(OBJ_CC) $(OBJ_GEN) $(OBJ_COMPAT)
$(OBJ_PROTOLIB_CPP) $(OBJ_PAI_CPP)

CLEANFILES = ns nse nsx ns.dyn $(OBJ) $(OBJ_EMULATE_CC) \
$(OBJ_EMULATE_C) common/tclAppInit.o \
$(GEN_DIR)* $(NS).core core core.$(NS) core.$(NSX) core.$(NSE) \
common/ptypes2tcl common/ptypes2tcl.o

SUBDIRS=\
indep-utils/cmu-scen-gen/setdest \
indep-utils/webtrace-conv/dec \
indep-utils/webtrace-conv/epa \

2.2. INSTALLING THE P2PS-NS2 BINDING 19

indep-utils/webtrace-conv/nlanr \
indep-utils/webtrace-conv/ucb

BUILD_NSE = @build_nse@

all: $(NS) $(BUILD_NSE) all-recursive

all-recursive:
for i in $(SUBDIRS); do (cd $$i; $(MAKE) all;) done

$(NS): $(OBJ) common/tclAppInit.o Makefile
$(LINK) $(LDFLAGS) $(LDOUT)$@ \
common/tclAppInit.o $(OBJ) $(LIB)

Makefile: Makefile.in
@echo "Makefile.in is newer than Makefile."
@echo "You need to re-run configure."
false

$(NSE): $(OBJ) common/tclAppInit.o $(OBJ_EMULATE_CC) $(OBJ_EMULATE_C)
$(LINK) $(LDFLAGS) $(LDOUT)$@ \
common/tclAppInit.o $(OBJ) \
$(OBJ_EMULATE_CC) $(OBJ_EMULATE_C) $(LIB)

ns.dyn: $(OBJ) common/tclAppInit.o
$(LINK) $(LDFLAGS) -o $@ \
common/tclAppInit.o $(OBJ) $(LIB)

libnspai.dyn: $(OBJ) common/tclAppInit.o
$(LINK) $(PAI_SHARED_LDFLAGS) -o $@ \
common/tclAppInit.o $(OBJ) $(LIB)

PURIFY = purify -cache-dir=/tmp
ns-pure: $(OBJ) common/tclAppInit.o
$(PURIFY) $(LINK) $(LDFLAGS) -o $@ \
common/tclAppInit.o $(OBJ) $(LIB)

NS_TCL_LIB = \
tcl/lib/ns-compat.tcl \
tcl/lib/ns-default.tcl \
tcl/lib/ns-errmodel.tcl \
tcl/lib/ns-lib.tcl \
tcl/lib/ns-link.tcl \
tcl/lib/ns-mobilenode.tcl \
tcl/lib/ns-sat.tcl \
tcl/lib/ns-cmutrace.tcl \
tcl/lib/ns-node.tcl \
tcl/lib/ns-rtmodule.tcl \

20 CHAPTER 2. INSTALLING THE P2PS NS2 TOOLKIT

tcl/lib/ns-hiernode.tcl \
tcl/lib/ns-packet.tcl \
tcl/lib/ns-queue.tcl \
tcl/lib/ns-source.tcl \
tcl/lib/ns-nam.tcl \
tcl/lib/ns-trace.tcl \
tcl/lib/ns-agent.tcl \
tcl/lib/ns-random.tcl \
tcl/lib/ns-namsupp.tcl \
tcl/lib/ns-address.tcl \
tcl/lib/ns-intserv.tcl \
tcl/lib/ns-autoconf.tcl \
tcl/rtp/session-rtp.tcl \
tcl/lib/ns-mip.tcl \
tcl/rtglib/dynamics.tcl \
tcl/rtglib/route-proto.tcl \
tcl/rtglib/algo-route-proto.tcl \
tcl/rtglib/ns-rtProtoLS.tcl \

tcl/interface/ns-iface.tcl \
tcl/mcast/BST.tcl \

tcl/mcast/ns-mcast.tcl \
tcl/mcast/McastProto.tcl \
tcl/mcast/DM.tcl \

tcl/mcast/srm.tcl \
tcl/mcast/srm-adaptive.tcl \
tcl/mcast/srm-ssm.tcl \
tcl/mcast/timer.tcl \
tcl/mcast/McastMonitor.tcl \
tcl/mcast/mftp_snd.tcl \
tcl/mcast/mftp_rcv.tcl \
tcl/mcast/mftp_rcv_stat.tcl \
tcl/mobility/dsdv.tcl \
tcl/mobility/dsr.tcl \

tcl/ctr-mcast/CtrMcast.tcl \
tcl/ctr-mcast/CtrMcastComp.tcl \
tcl/ctr-mcast/CtrRPComp.tcl \

tcl/rlm/rlm.tcl \
tcl/rlm/rlm-ns.tcl \
tcl/session/session.tcl \
tcl/lib/ns-route.tcl \
tcl/emulate/ns-emulate.tcl \
tcl/lan/vlan.tcl \
tcl/lan/abslan.tcl \
tcl/lan/ns-ll.tcl \
tcl/lan/ns-mac.tcl \
tcl/webcache/http-agent.tcl \
tcl/webcache/http-server.tcl \
tcl/webcache/http-cache.tcl \
tcl/webcache/http-mcache.tcl \

2.2. INSTALLING THE P2PS-NS2 BINDING 21

tcl/webcache/webtraf.tcl \
tcl/webcache/empweb.tcl \
tcl/webcache/empftp.tcl \
tcl/plm/plm.tcl \
tcl/plm/plm-ns.tcl \
tcl/plm/plm-topo.tcl \
tcl/mpls/ns-mpls-classifier.tcl \
tcl/mpls/ns-mpls-ldpagent.tcl \
tcl/mpls/ns-mpls-node.tcl \
tcl/mpls/ns-mpls-simulator.tcl \
tcl/lib/ns-pushback.tcl \
tcl/lib/ns-srcrt.tcl \
tcl/mcast/ns-lms.tcl \
tcl/lib/ns-qsnode.tcl \
@V_NS_TCL_LIB_STL@

$(GEN_DIR)ns_tcl.cc: $(NS_TCL_LIB)
$(TCLSH) bin/tcl-expand.tcl tcl/lib/ns-lib.tcl @V_NS_TCL_LIB_STL@
| $(TCL2C) et_ns_lib > $@

$(GEN_DIR)version.c: VERSION
$(RM) $@
$(TCLSH) bin/string2c.tcl version_string < VERSION > $@

$(GEN_DIR)ptypes.cc: common/ptypes2tcl common/packet.h
./common/ptypes2tcl > $@

common/ptypes2tcl: common/ptypes2tcl.o
$(LINK) $(LDFLAGS) $(LDOUT)$@ common/ptypes2tcl.o

common/ptypes2tcl.o: common/ptypes2tcl.cc common/packet.h

install: force install-ns install-man install-recursive

install-ns: force
$(INSTALL) -m 555 -o bin -g bin ns $(DESTDIR)$(BINDEST)

install-man: force
$(INSTALL) -m 444 -o bin -g bin ns.1 $(DESTDIR)$(MANDEST)/man1

install-recursive: force
for i in $(SUBDIRS); do (cd $$i; $(MAKE) install;) done

clean:
$(RM) $(CLEANFILES)

AUTOCONF_GEN = tcl/lib/ns-autoconf.tcl
distclean: distclean-recursive
$(RM) $(CLEANFILES) Makefile config.cache config.log config.status \

22 CHAPTER 2. INSTALLING THE P2PS NS2 TOOLKIT

autoconf.h gnuc.h os-proto.h $(AUTOCONF_GEN); \
$(MV) .configure .configure- ;\
echo "Moved .configure to .configure-"

distclean-recursive:
for i in $(SUBDIRS); do (cd $$i; $(MAKE) clean; $(RM) Makefile;) done

tags: force
ctags -wtd *.cc *.h webcache/*.cc webcache/*.h dsdv/*.cc dsdv/*.h \
dsr/*.cc dsr/*.h webcache/*.cc webcache/*.h lib/*.cc lib/*.h \
../Tcl/*.cc ../Tcl/*.h

TAGS: force
etags *.cc *.h webcache/*.cc webcache/*.h dsdv/*.cc dsdv/*.h \
dsr/*.cc dsr/*.h webcache/*.cc webcache/*.h lib/*.cc lib/*.h \
../Tcl/*.cc ../Tcl/*.h

tcl/lib/TAGS: force
(\
cd tcl/lib; \
$(TCLSH) ../../bin/tcl-expand.tcl ns-lib.tcl | grep ’^### tcl-expand.tcl:
begin’ | awk ’{print $$5}’ >.tcl_files; \
etags --lang=none -r ’/^[\t]*proc[\t]+\([^ \t]+\)/\1/’ ‘cat .tcl_files‘; \
etags --append --lang=none -r ’/^\([A-Z][^ \t]+\)[\t]+
\(instproc\|proc\)[\t]+\([^ \t]+\)[\t]+/\1::\3/’ ‘cat .tcl_files‘; \
)

depend: $(SRC)
$(MKDEP) $(CFLAGS) $(INCLUDES) $(SRC)

srctar:
@cwd=‘pwd‘ ; dir=‘basename $$cwd‘ ; \

name=ns-‘cat VERSION | tr A-Z a-z‘ ; \
tar=ns-src-‘cat VERSION‘.tar.gz ; \
list="" ; \
for i in ‘cat FILES‘ ; do list="$$list $$name/$$i" ; done; \
echo \
"(rm -f $$tar; cd .. ; ln -s $$dir $$name)" ; \
(rm -f $$tar; cd .. ; ln -s $$dir $$name) ; \
echo \
"(cd .. ; tar cfh $$tar [lots of files])" ; \
(cd .. ; tar cfh - $$list) | gzip -c > $$tar ; \
echo \
"rm ../$$name; chmod 444 $$tar" ; \
rm ../$$name; chmod 444 $$tar

force:

test: force

2.3. CONFIGURATION 23

./validate

.cpp.o:
@rm -f $@
$(CC) -c $(CFLAGS) $(INCLUDES) -o $@ $*.cpp

Create makefile.vc for Win32 development by replacing:
"# !include ..." -> "!include ..."
makefile.vc: Makefile.in
$(PERL) bin/gen-vcmake.pl < Makefile.in > makefile.vc
$(PERL) -pe ’s/^# (\!include)/\!include/o’ < Makefile.in > makefile.vc

2.2.2 What’s included in the P2PS-NS2 Binding?

The P2PS-NS2 distribution consiststs of several co-operating software stacks,
which are described in the following chapters of the manual. It includes the
PAI interface to Protolib (described in Chapt. 4, the Java NS2 agent exten-
sions, described in Chapt. 5 and a customised version of P2PS, described in
Chapt. 7, along with the necessary jar files it needs e.g. jdom.

P2PS had to be de-threaded for this implementation. Therefore, several
classes within P2PS had to be modified in order to take out the thread-
ing dependencies which are at the core of the P2PS implementation. P2PS
was written as a multi-threaded toolkit but this does not fit well with scal-
ability and timing issues for running NS2 simulations. The major classes,
which were de-threaded were the UDPInputMontor, and the asynchronous
discovery mechanisms, which set of listeners within the background for noti-
fication. Within the NS2 implementation, it is assumes that things turn up
the a particular order.

2.3 Configuration

The location of the NS2 shared library must be set within the Java source
code. At the time of writing, I could not get the LD LIBRARY PATH work-
ing with loading shared libraries from Java on my Mac OS 10.x system. Fur-
ther, passing this location through to Java is also non-trivial since we are
dynamically creating a JVM and therefore this would have to be first passed
through the C++ code, then onto the the JVM created at run-time. There-
fore, until the LD LIBRARY PATH mechanism problem is solved, it is far
easier to modify the source and recompile this one Java class, which is easy
and quick.

This is set within PAINative class, which is in the pai.impl package.

24 CHAPTER 2. INSTALLING THE P2PS NS2 TOOLKIT

package pai.impl;

public class PAINative implements PAIInterface, PTIInterface {

....

static {
if (Logging.isEnabled())

System.out.println("PAINative: Java library path = " + System.getProperty("java.library.path"));
// System.loadLibrary("PAI");
// System.load("/Users/scmijt/Apps/nrl/p2ps-ns2/lib/libPAI.so");
System.load("/Users/scmijt/Install/ns-allinone-2.26/ns-2.26/libnspai.dyn");
//System.loadLibrary("nspai");

}

You need to replace the following path:

System.load("/Users/scmijt/Install/ns-allinone-2.26/ns-2.26/libnspai.dyn");

to:

System.load("YOUR_NS_ROOT/ns-2.26/libnspai.dyn");

and then recompile this class by cd’ing into the P2PS installation directory,
and using the following commands:

cd src/jpai/pai/impl/
javac -classpath ../../../../classes -d ../../../../classes PAINative.java

which will compile the class and put it in the correct place.

2.4 conclusion

This chapter described the installation of the core packages needed for P2PS-
NS2. The Protolib library needs to be installed first, followed by the P2PS-
NS2 installation. Both installation require the editing of the NS Makefile.in
file in order to add the correct dependencies into NS2. P2PS-NS requires
the installation of both the static and shared libraries for the NS2 executable
and the JNI bindings describes later in this manual.

Chapter 3

Protolib

3.1 An overview of Protolib

A typical usage scenario of Protolib is given in the Fig 3.2 . Here, a timer is
set up to trigger every 100 milliseconds. Upon a trigger event, a C++ call-
back is invoked that allows the application developer to integrate an event
action. In this example, the application sends a UDP message using Protolib.
This communication mechanism can be achieved using a standard UDP call
across a network or between two NS-2 nodes. When the packet is received
by the receiver, another event is generates indicating that data has been re-
ceived. This, in turn, calls a routine that allows the application to collect
the data from the UDP port and process it in some way. The application in-
terface between the Protolib and the P2P middleware abstracts the reliance
on specific networking/timing mechanisms in Protolib to create a generalized
pluggable transport mechanism. Within PAI, middleware or indeed applica-
tions program to one interface and then choose the environment they want
to run within e.g. Network or NS-2. This is very similar to GATLite but
at a far lower level. PAI also support multiple sockets, timers and corre-
sponding listeners for timeouts or UDP receive data events and establishes a
cooperating event dispatching mechanism using multithreading.

25

26 CHAPTER 3. PROTOLIB

ApplicationCommunication

UDP

Protolib

Network NS-2

Timers

Event Dispatcher

TCP* Protocol Timer

Underlying Fabric

Event
Notifications

Figure 3.1: An overview of the Protolib toolkit, showing the three distinct
components, sockets timers and a mechanism for dispatching events.

Protolib

ApplicationEvent Dispatcher

trigger

UDP Receive

Network NS-2

Protolib

Application

UDP Send

100 Millisec Timer

Event Dispatcher

trigger

Callback
Functions

Figure 3.2: An overview of the functionality provided by the ProtoApp ap-
plication, which triggers a data send once-per-second.

Chapter 4

The PAI Interface

27

28 CHAPTER 4. THE PAI INTERFACE

Protolib

PAI

PTI (Timing)PCI (Communication)

P2P Middleware

Figure 4.1: An overview of the PAI interface, showing the two sections to
the underlying Protolib sockets and timers.

PAI Engine

PAITimerPAISocket PAIDispatcher

PAI
Factory

UDP
Socket

NS2
UDP

Socket
Timer

NS2
Timer

Event
Disp.

NS2
Event
Disp.

PAI Interface

Application

Calls e.g.
send/receive

Notifications e.g.
Socket Received Data,

Timer time outs

PAI
Environment

Figure 4.2: The PAI interface uses the Factory design pattern to create a
common high level interface to whatever sockets or underlying timers the
programmer is using.

29

pai.getEnvironment()->setBinding(PAI_NETWORK);
pai.getEnvironment()->setNetworkProtocol(PAI_UDP);

timer = pti->addTimer(1.0, 5);
sock = pci->addSocket(5004);

pci->addListener(sock, this, (CallbackFunc)&PAI_Example::OnTxTimeout);
pti->addListener(timer, this, (CallbackFunc)&PAI_Example::OnSocketRecv);

pti->runTimers();

void PAI_Example::OnTxTimeout() {
…..
 pci->send(sock1, "127.0.0.1", buffer, len);
}

void PAI_Example::OnSocketRecv() {
 …..
 char *buf = pci->recv(sock1, &addr, &len);
}

Example Main Program:

When Timer times out: When Data is Received:

Figure 4.3: An PAI code example, showing how you would implemented the
standard Protolib demonstration, which sets of a 1 second timer and sends
data between two nodes.

30 CHAPTER 4. THE PAI INTERFACE

Chapter 5

Java NS2 Agents

5.1 NS-2 Node JNI Integration

Each NS2 node can optionally use Java code within the simulation, which
can, in turn, be used to invoke 3rd party Java mechanisms, including the
supported P2PS middleware, discussed in the next chapter. This chapter
gives an overview of the interaction between the TCL scripts, the C++ NS2
agents and Java objects, which can be accessed from each NS2 node. The
various code snippets are taken from the P2PS-NS2 source tree and pointers
are referenced relative to the installation directory, when provided.

5.2 NS2 Java Overview

The central class, which implements the bridge between the NS2 nodes and
an associated Java object is JavaAgent. JavaAgent inherits from Protolib’s
NsProtoAgent, which is a C++ NS2 agent that provides the data transport
implementation within NS2. By inheriting from this class, JavaAgent can
use this transport mechanism to transmit UDP packets between NS-2 nodes.
However, JavaAgent does not use this Protolib class directly. The commu-
nication proceeds through two different layers. Firstly, if JavaAgent wishes
to send packets itself, then it uses the PAI interface, which in turn talks to
the Protolib NS2 implementation. If if wishes to create a Java Object and
let that send messages, then it uses the Java JNI interface to PAI, which in
turn uses the PAI interface to send the actual data packets.

Figure 5.1 shows an overview of this process. Also, shown in this figure
is a general overview of how Java fits into the picture. Briefly, each Ns2
JavaAgent interfaces through a singleton C++ class (called JVMRef) that
understands how create a Java Virtual Machine (JVM) and how to use JNI

31

32 CHAPTER 5. JAVA NS2 AGENTS

Java
Broker

Protolib

JNI JVM

PAI

Send Ref_

Locate Agent
Using Ref_

NS2 Agent

Protolib
PAI

NS2 Agent

Protolib
PAI

NS2 Agent

NS2 Comms

Custom
Java
CodeCustom

Java
Code Custom

Java
Code

JNI Interface

Figure 5.1: An overview of how NS2 interacts with Java

to invoke external Java functions. The JavaAgent uses this class to issue
commands to the JavaBroker class on the Java side in order to create and
manage remote objects that are attached to the various Ns2 nodes being
created within the simulation.

There could potentially be thousands of NS2 nodes and each one might
want to instantiate and use a Java object. Therefore scalability issues can be
encountered if this interaction is not slimline enough. Here, the C++ JVM
helper class only allows ONE JVM to be created no matter how many nodes
exist in the simulations. It then uses the JavaBroker class, which creates and
manages the external Java objects. JavaBroker contains functionality that
can dynamically create a Java object from a textual representation of its
name (e.g. pai.examples.ns2.SimpleCommand). Once created such objects
are added to a local Hashtable, which associates an NS2 agent’s ID with the
associated object that has been created for this interaction. The NS2 agent’s
ID is actually its C++ pointer, which is reused later within the JNI binding
(see below). Therefore, each NS2 node only instantiates the Java class it
needs rather than any other wrapping classes. This implementation therefore
maps one-to-one between the C++ NS2 agent and its corresponding Java
object and therefore keeps the memory allocation to an absolute minimum.

Each Java class can also interact with other NS2 nodes by using the Java
PAIInterface or PTIInterface interfaces classes within the PAI JNI imple-

5.3. INVOKING THE VIRTUAL MACHINE: THE C++ TO JAVA BRIDGE33

mentation. These implementations allow the NS2 Java code to issue com-
mands to send data between NS2 nodes. To do this, a JNI bridge is provided
between the Java PAI interface and the corresponding C++ PAI interface
that contains the necessary underlying functionality.

The NS2 agent’s ID is used within the JNI binding to the PAI interface
in order to re-associate the Java object within its C++ agent once we are
back in the c++ domain i.e. the Java classes need to be able to locate the
actual Ns2 agent (in C++) that created this object because they have to send
data from their node rather than any node. We therefore need to maintain
a reference and pass this through the Java JVM and the JNI PAI interface
in order for the the Java implementation route the call appropriately.

5.3 Invoking the Virtual Machine: the C++

to Java Bridge

This section gives a brief overview of the how the NS2 C++ agent (JavaBro-
ker class) invokes a Java virtual machine and creates and maintains references
to Java objects for each Ns2 node.

There are three main class in this integration:

1. JavaAgent.cpp: the C++ JavaAgent class is an NS2 agent that un-
derstands how to create and interact with the associated Java objects
for this NS2 node. It uses the JVMRef class to create a reference to a
single Java virtual machine and thereafter uses the and the JavaBroker
class to locate and instantiate Java objects.

2. JVMRef.cpp: This class creates a Java virtual machine and maintains
a single reference to this. Only one virtual machine can be instantiated
using this class. It also contains a number of convenience methods,
which hide the JNI details for interacting with the JavaBroker class
and provides a clean interface for the C++ JavaAgent to use.

3. JavaBroker.java: this class allows the C++ JavaBroker to create
Java objects and provides a container for these objects during the life-
time of the simulation. A Java Hashtable is used to store each Java
object along with its identifier, which is the reference to the NS2 agent
that this Java object belongs to. Therefore, each NS2 agent can instan-
tiate only one Java class and there is a one-to-one interaction between
an NS2 agent and its Java object.

34 CHAPTER 5. JAVA NS2 AGENTS

JVMRef.cpp

YourClass.java

JavaBroker.java

implements

ONE JVM Instance

YourClass.java

YourClass.java

CommandInterface.java

JavaAgent.cpp

script.tcl

JavaC++/TCL

Figure 5.2: The C++ and Java classes used to implement the TCL/C++
and Java bridging mechanism.

These interactions are shown in detail in Figure 5.2. Briefly, the pro-
grammer sets the classpath and the actual java class being created in the
TCL script. The JavaAgent then passes this data via the JVMRef class to
the JavaBroker Java object. The JavaBroker object creates this object on-
the-fly from the supplied name. This means that you can access multiple
java objects of the same type or different types for different nodes, depend-
ing on what you want to implement. For example, you could have a Java
data collector agent talking to a Java data collection manager node instance.
The only stipulation on the Java objects being created is that they should
implement the CommandInterface.

The java implementation keeps track of each object in a Hashtable and
contains various housekeeping methods for the control of these objects.

5.4 Invoking Java Agents from NS2 Agents

Figure 5.3 shows interaction between an agent and its associated Java class.
The programmer who wishes to use this Java functionality within their NS2
simulations only needs to be concerned within their NS2 TCL script and
their Java class that implements the behaviour. The relationship between

5.4. INVOKING JAVA AGENTS FROM NS2 AGENTS 35

JavaAgent
Through

Command()

JVM

myScript.tcl

setJavaClass MyJProg
Public class MyJProg

String command(String command, String[] args) {
 If (command.equals(“discover”)
 ...

Invokes
command()
Method on
Java Class

ONE
JVM

Instance

Object
Container

One Java
instance for
Each Agent

NsProtoAgent

Figure 5.3: The interface to a Java program for an agent employs a similar
interface to that of NS2 when communicating between the TCL scripts and
the C++ classes.

an Ns2 agent and its Java class is very similar to the relationship between
an NS2 TCL script and its associated C++ class (i.e. an NS2 agent) which
implements the same kind of interaction through sending text commands
between the two. The Java interface employs the same mechanism to bridge
these different programming languages. The C++ agent (JavaAgent) simply
acts as a go-between and passes that commands across to the appropriate
Java object.

Therefore, the interface between the NS2 JavaAgent and the chosen Java
Class it will interact with, uses the same command-style interface as the TCL-
C++ interface for invoking functionality on NS2 agents. This command-style
interaction satisfies some essential constraints:

• Flexibility: it will keep the flexibility of being able to use NS2 agents
in any way programmer sees fit - the Java extensions are optional and
any agent extending the JavaAgent can choose to use this functionality.
However, the core C++ agent code can be programmed to incorporate
and other functionality needed beyond the scope of Java.

• Simplicity: the scalability issues and framework for interacting with
the Java objects can easily be hidden behind the container C++ and

36 CHAPTER 5. JAVA NS2 AGENTS

YourClass.java

implements

CommandInterface.java

script.tcl

JavaTCL

setClass <classpath> <class>

javaCommand <command> <args>

Figure 5.4: The user’s view of the interaction between the NS2 agent/script
and the Java class associated with that NS2 node.

Java classes - the programmer does not need to be aware of their pres-
ence.

• Familiarity: this mechanism allows communication between the NS2
agent and any attached Java class through the same familiar interface as
NS2 programmers interface between the TCL scripts and C++ agents
now.

This interaction is shown in Figure 5.4, which shows some JavaAgent
commans for specifying and attaching a Java object and for sending it com-
mands. These are the minimum commands needed in order to use your Java
object. Each Ns2 node creates a Java object of its own choice by using the
TCL command:

setClass <classpath> <class>

which allows the Java classpath to be set along with the name of the Java
class to be instantiated for this NS2 node. Once the Java object has been
created, commands can be sent by using the TCL command:

javaCommand <command> <args>

5.5. CREATING AND ATTACHING A JAVA AGENT 37

which would invoke the java command with the associated arguments. There
are also other commands implemented that allow you to specify the delimiter
to make it easier to chunk your arguments in a flexible way and for creating
a trigger mechanism. The following 2 sections illustrate these commands
through the use of example TCL and Java codes and the next chapter illus-
trates how you can extend the Java functionality to use PAI in order to send
data between your Java objects through the NS2 subsystem.

5.5 Creating and Attaching a Java Agent

This is a Hello World example that demonstrates how to specify the Java
classpath and choose a Java class to instantiate and attach to your C++
agent. It then implements a simple hello function which is invoke on the
Java object.

5.5.1 The TCL Side

The following is the TCL script part of the implementation, which creates
two JavaAgent NS2 nodes that each create a SimpleCommand Java object
and then invoke a ’hello’ command on that object. This example can be
found in examples/pai/javaAgent/startJava.tcl.)

puts "Starting..."

Create a simulator instance
set ns_ [new Simulator]

Create two nodes
set n1 [$ns_ node]
set n2 [$ns_ node]

Put a link between them
$ns_ duplex-link $n1 $n2 64kb 100ms DropTail
$ns_ queue-limit $n1 $n2 100
$ns_ duplex-link-op $n1 $n2 queuePos 0.5
$ns_ duplex-link-op $n1 $n2 orient right

puts "Creating JavaAgent NS2 agents and attach them to the nodes..."
set p1 [new Agent/JavaAgent]
$ns_ attach-agent $n1 $p1

set p2 [new Agent/JavaAgent]
$ns_ attach-agent $n2 $p2

38 CHAPTER 5. JAVA NS2 AGENTS

puts "CREATED OK"

Initialize each broker telling it what its NS2 address is

puts "In script: Initializing ..."

$ns_ at 0.0 "$p1 initAgent"
$ns_ at 0.0 "$p2 initAgent"

puts "Setting Java Object to use by each agent ..."

$ns_ at 0.0 "$p1 setClass
/Users/scmijt/Apps/nrl/p2ps-ns2/classes pai.examples.ns2.SimpleCommand"

$ns_ at 0.0 "$p2 setClass
/Users/scmijt/Apps/nrl/p2ps-ns2/classes pai.examples.ns2.SimpleCommand"

send a message to each agent and tell it to print it to the screen
This is a "HelloWorld" program for JavaAgents

$ns_ at 0.0 "$p1 javaCommand hello AStringFromP1"
$ns_ at 0.0 "$p2 javaCommand hello AStringFromP2"

$ns_ at 10.0 "finish $ns_"

proc finish {ns_} {
$ns_ halt
delete $ns_
}

$ns_ run

The Java agent parts can be seen in this example. The setClass function
sets the classpath to the p2ps-ns2 installations classes directory. Here, the ac-
tual java class that this node will be using is specified as pai.examples.ns2.SimpleCommand.
Note here that you can load in classes that are contained in any java package
that you wish as long as you follow the Java conventions for locating the
compiled versions of these classes.

Once the Java classes have been located, you can then execute various
commands by using the javaCommand instruction. Here we ask the Java
class to execute a hello command and pass a string as an argument, identi-
fying the node that is sending the message i.e. AStringFromP1. This simple
example demonstrates that two Java objects have been created, one for each
node and each Java object has been correctly associated or bound to the
particular NS2 node.

5.5. CREATING AND ATTACHING A JAVA AGENT 39

5.5.2 The Java Side

On the java side of things each object you want to talk to must implement
a standard interface called ”CommandInterface” which enforces that every
Java object implementing this interface implements this command method:

package pai.broker;

public interface CommandInterface {

public String command(String command, String value);
}

Every class that you wish to be used from an NS2 agent must implement
this Java interface so that it can understand the instructions that are sent
to it. Below, an example Java class is given to illustrate the code involved
in this process (the actual Java code for this and all other examples

can be found in the src/jpai/pai/examples/ns2 directory):

package pai.examples.ns2;

import pai.broker.CommandInterface;

public class SimpleCommand implements CommandInterface {

static int count=0;

int myID;

public SimpleCommand() {
++count;
myID=count;

}

public String command(String command, String args[]) {

if (command.equals("hello"))
System.out.println("SimpleCommand(" + myID + ")
called with Val: " + args[0]);

return "All called ok from node " + myID;
}

}

As you can see, this is extremely simple, the C++ and Java JVM class
take care of all the complexity. In the command method, you can implement

40 CHAPTER 5. JAVA NS2 AGENTS

any behaviour you want. You can also return a String to your C++ program
as indicited. This could allow you, for example, to discover other NS2 nodes
using P2PS and then return their address to your C++ agent and keep the
control at this point (helpful for non-java programmers!).

5.6 Changing the Command Delimiter

This example demonstrates how you would change the delimiter used to
separate command arguments sent to your Java application. The default
is to use a white space (as in NS2) to automatically parse the arguments
and send them as a sequence of arguments to your agent or Java object.
Within the Java NS2 implementation however, this choice is left up to the
programmer. Therefore, you could specify for example a ’-’ symbol as a
delimeter and a sequence such as this

8 - cherry apple oranges - to eat

would be parsed and sent to you program as 3 strings:

8

cherry apple oranges

to eat

This allows more flexibility in the way you send instructions to your Java
code because it does not limit the input to contiguous strings. The example
given below demonstrates how this is achieved from the TCL and Java sides.

5.6.1 The TCL Side

The following is the TCL script part of the implementation, which creates two
JavaAgent NS2 nodes that each create a ChangeDelimiter Java object and
then change the delimiter of one of the nodes in order to split up the input
with respect to a ’-’ symbol. Note that setting delimiters is a global process
and therefore can be set through any node and will be applied to all nodes.
This example can be found in examples/pai/javaAgent/changeDelimiter.tcl)

puts "Starting..."

Create simulator instance
set ns_ [new Simulator]

Create two nodes

5.6. CHANGING THE COMMAND DELIMITER 41

set n1 [$ns_ node]
set n2 [$ns_ node]

Put a link between them
$ns_ duplex-link $n1 $n2 64kb 100ms DropTail
$ns_ queue-limit $n1 $n2 100
$ns_ duplex-link-op $n1 $n2 queuePos 0.5
$ns_ duplex-link-op $n1 $n2 orient right

puts "Creating JavaAgent NS2 agents and attach them to the nodes..."
set p1 [new Agent/JavaAgent]
$ns_ attach-agent $n1 $p1

set p2 [new Agent/JavaAgent]
$ns_ attach-agent $n2 $p2

puts "In script: Initializing ..."

$ns_ at 0.0 "$p1 initAgent"
$ns_ at 0.0 "$p2 initAgent"

puts "Setting Java Object to use by each agent ..."

$ns_ at 0.0 "$p1 setClass
/Users/scmijt/Apps/nrl/p2ps-ns2/classes pai.examples.ns2.ChangeDelimiter"

$ns_ at 0.0 "$p2 setClass
/Users/scmijt/Apps/nrl/p2ps-ns2/classes pai.examples.ns2.ChangeDelimiter"

Delimiters are global and can be set through any node

$ns_ at 0.0 "$p1 javaCommand setDelimiter -"

$ns_ at 0.0 "$p2 javaCommand hello A-String-From-P2"

$ns_ at 10.0 "finish $ns_"

proc finish {ns_} {
$ns_ halt
delete $ns_
}

$ns_ run

The Java classes are located and instantiate as previous. Now, we can
use the javaCommand setDelimiter instruction to change the delimiter. We
set this to ’-’ and then send a single contiguous string to node p2 (A-String-
From-P2) by using the ’hello’ command. Now instead of passing this as a

42 CHAPTER 5. JAVA NS2 AGENTS

single string (as you would get in the NS2 C++ binding), you would get 4
separate string send to your program, which can be accessed individually, for
example, as:

A

String

From

P2

5.6.2 The Java Side

On the java side ChangeDelimiter.java implements the ”CommandInterface”
to identify that it can process commands:

package pai.examples.ns2;

import pai.broker.CommandInterface;

public class ChangeDelimiter implements CommandInterface {

static int count=0;

int myID;

public ChangeDelimiter() {
++count;
myID=count;

}

public String command(String command, String args[]) {

if (command.equals("hello")) {
System.out.println("Command has "

+ args.length + " arguments");
for (int i=0; i<args.length; ++i) {

System.out.println("Arg[" + i + "] = " + args[i]);
}

}

return "All called ok from node " + myID;
}

}

Here, the ’hello’ command simply processes through the arguments and
prints each to the screen on a separate line. Therefore, running the script
will produce the following output:

5.7. CONCLUSION 43

In script: Initializing ...
Setting Java Object to use by each agent ...
Classpath is -Djava.class.path=/Users/scmijt/Apps/nrl/p2ps-ns2/classes
command has 4 arguments
Arg[0] = A
Arg[1] = String
Arg[2] = From
Arg[3] = P2

5.7 Conclusion

In this chapter, a brief overview of the Java integration was given, from a
conceptual perspective and a high-level source-code perspective. Then, two
different examples were provided that illustrate how one would attach a Java
object to an NS2 node and how one can execute Java commands on that
object. Lastly, an example was given that demonstrates how you can change
the delimiter used to parse the list of arguments you can send to your Java
object. This employs a flexible mechanism that can use any string as a
delimiter to send lists or sentences to your Java object without having to
parse further.

44 CHAPTER 5. JAVA NS2 AGENTS

Chapter 6

Using PAI within Java Agents

In the last chapter, we discussed the way Java objects could be attached to
Java agents and invoke from within NS2 simulations. In this chapter, an
overview of how such Java nodes can be used to send packages between NS2
nodes by using the PAI interface, described in Chapt. 4. The Java interface
contains a an interface to PAI through JNI that enables the Java objects to
create sockets, attach listeners to the sockets and trigger events.

6.1 The Java PAI Overview

Figure 6.1 shows an overview of the interaction between the C++ agents, the
JavaBroker and the Java PAI bridge that enables this to be interfaced with
the C++ PAI library. As discussed briefly in the previous chapter, the C++
JavaAgent passes the pointer to the C++ agent to the JavaBroker when it
requests to create and attach a Java agent to the NS2 node.

The JavaBroker class uses this pointer to store the created Java object
in a hashtable for lookup but also pass this references across to the JNI
interface, when a Java object requires the use of the PAI interface. This
enables the JNI interface to locate the node that created the Java object and
therefore whom is indirectly issuing the commands, which ensures that the
data being sent through the sockets is sent from the correct node. The PAI
interface sends these commands to the Protolib library, which in turn, uses
the Protolib NS2 UDP implementation to send the data between the NS2
nodes.

45

46 CHAPTER 6. USING PAI WITHIN JAVA AGENTS

JNI
Bridge

Protolib

JavaBroker

JPAI

PAI

Send Ref_ Ref_

Locate Agent
Using Ref_

NS2 Agent

Protolib
PAI

NS2 Agent

Protolib
PAI

NS2 Agent

NS2 Comms

Java
Agent
Code

Figure 6.1: An overview PAI is accessed from within a Java node for an NS2
agent

6.2 The Java PAI interface

The Java PAI interface interfaces to the communication part of the PAI
interface (i.e. the sockets). It allows the user to create multiple sockets
and allows multiple socket listeners to be attached to each socket. This
functionality is necessary for the P2PS implementation, described in the
next chapter to function correctly.

The Java PAI interface is implemented as a Java interface and uses the
Factory Method Design pattern [11] in order to create the JNI implementa-
tion of this interface. This means that other implementations (e.g. a Java
implementation) could be implemented at a later data and trivially plugged
in to change the underlying mechanisms used to implement this interface.
The application developer however, would not notice this code change be-
cause s/he is working with a consistent interface. The JPAI interface can be
found in package pai.api in the java source tree and is listed below:

public interface PAIInterface {

void addPAISocketListener(DatagramSocket sock, PAISocketListener listener);

6.2. THE JAVA PAI INTERFACE 47

void removePAISocketListener(DatagramSocket sock, PAISocketListener listener);

void open(DatagramSocket sock, int port) throws SocketException;

DatagramSocket addSocket(int port) throws SocketException;

void removeSocket(DatagramSocket sock) throws SocketException;

void setReuseAddress(DatagramSocket sock, boolean on) throws SocketException;

void setSendBufferSize(DatagramSocket sock, int size) throws SocketException;

void setReceiveBufferSize(DatagramSocket sock, int size) throws SocketException;

void setSoTimeout(DatagramSocket sock, int timeout) throws SocketException;

void send(DatagramSocket sock, DatagramPacket p) throws IOException;

void receive(DatagramSocket sock, DatagramPacket p) throws IOException;

void close(DatagramSocket sock);

void joinGroup(MulticastSocket sock, InetAddress mcastaddr) throws IOException;

void leaveGroup(MulticastSocket sock, InetAddress mcastaddr) throws IOException;

void setMulticast(MulticastSocket sock, boolean val);

public InetAddress getByName(String host) throws UnknownHostException;

public InetAddress getLocalHost();

public boolean cleanUp();
public boolean runBlock();
public boolean runNonBlock();

public void setNS2Node(String nodeID);
}

Most of the calls are self-explanatory. PAI uses the Java conventions for
naming the classes e.g. DatagramSocket and MulticastSocket, both found in
the java.net package (see [3]). The PAI Java implementation reimplements
the methods from these classes in order to use the PAI interface. This enables
the PAI interface to provide the functionality but it leaves the Java interface
that developers are familiar with the same. Therefore, to create a Java UDP
socket, you simply instantiate a DatagramSocket, which in turn invokes PAI

48 CHAPTER 6. USING PAI WITHIN JAVA AGENTS

to create a C++ PAI socket, which in turn creates a Protolib socket.
This design carries the whole weight of the P2PS integration that is dis-

cussed in the next chapter. To an application, this conventional object inter-
face to creating UDP sockets means that they require little or no modification
in order to use this PAI JNI binding here. For example, in order to get P2PS
working with this interface, a new resolver was created which copied the cur-
rent UDP resolver verbatim and simply did a find and replace on java.net
with pa.net to change the package where P2PS looked for the Datagram-
Socket class i.e. it uses the PAI implementation rather than the Java one.
Everything else follows through the various layers. This re-implementation
of these base Java classes can be found in the pai.net package in the source
tree.

The calls in this interface are illustrated in the examples given later in
this chapter.

6.2.1 Using the Java PAI Interface in Ns2 Java Objects

Each Java objects that has been attached to an NS2 node must implement
the PAIAccessInterface given below, which can be found in the pai.broker
package within the source tree:

package pai.broker;

import pai.api.PAIInterface;

public interface PAIAccessInterface {

public void setPAI(PAIInterface pai);
}

PAIAccessInterface provides a mechanism for the JavaBroker object to
create a PAIInterface object to the JNI PAI implementation and pass this
reference to your Java code. You can then use this reference directly to make
PAI calls just as you would if you were using PAI directly.

This mechanism managers the creation and deletion of the PAI JNI im-
plementation and sets variables in the JNI before each invocation so that it
has the correct reference to the object it is dealing with at that moment.
Briefly, the JavaBeker only create one instance of the PAI JNI implemen-
tation. This means that before each call it must set the reference to the
actual NS2 node it is about to issue a command to enabling the interface to
create the appropriate binding to PAI at the lower levels. This design adds a
small overhead to each call but saves a substantial amount of memory since

6.3. EXAMPLE 1: SENDING DATA FROM ONE NODE TO ANOTHER49

it efficiently uses one instance of the code rather that one for each node,
which would increase memory consumption greatly (i.e. image if you had
thousands of nodes).

6.3 Example 1: Sending Data From One

Node to Another

This example uses the Java PAICommands class to send data between two
NS2 nodes. The actual Java code specifies which nodes to communicate with.
This simple example demonstrates how Java objects can be attached to an
NS2 nodes and used to create sockets and send data between nodes.

6.3.1 The TCL Side

The following is the TCL script part of the implementation, which creates
two JavaAgent NS2 nodes attaches the PAICommands Java object to them,
initializes them and then sends data from the first node to the second by
setting the NS 2 address of the second node directly from the script, using
the setSendTo command.

Create multicast enabled simulator instance
set ns_ [new Simulator]

Create two nodes
set n1 [$ns_ node]
set n2 [$ns_ node]

Put a link between them
$ns_ duplex-link $n1 $n2 64kb 100ms DropTail
$ns_ queue-limit $n1 $n2 100
$ns_ duplex-link-op $n1 $n2 queuePos 0.5
$ns_ duplex-link-op $n1 $n2 orient right

puts "Creating JavaAgent NS2 agents and attach them to the nodes..."
set p1 [new Agent/JavaAgent]
$ns_ attach-agent $n1 $p1

set p2 [new Agent/JavaAgent]
$ns_ attach-agent $n2 $p2

puts "In script: Initializing agents ..."

$ns_ at 0.0 "$p1 initAgent"
$ns_ at 0.0 "$p2 initAgent"

50 CHAPTER 6. USING PAI WITHIN JAVA AGENTS

puts "Setting Java Object to use by each agent ..."

$ns_ at 0.0 "$p1 setClass
/Users/scmijt/Apps/nrl/p2ps-ns2/classes pai.examples.ns2.PAICommands"
$ns_ at 0.0 "$p2 setClass
/Users/scmijt/Apps/nrl/p2ps-ns2/classes pai.examples.ns2.PAICommands"

puts "Starting simulation ..."

$ns_ at 0.0 "$p1 javaCommand init"
$ns_ at 0.0 "$p2 javaCommand init"

$ns_ at 0.0 "$p1 javaCommand setSendTo [$n2 node-addr]"
$ns_ at 0.0 "$p1 javaCommand start"

$ns_ at 10.0 "finish $ns_"

proc finish {ns_} {
$ns_ halt
delete $ns_
}

$ns_ run

The Java classes are located and instantiate as described in Sect. 5.5.
Now, we can use the javaCommand init instruction to initialize the Java
nodes, set the send to address (the node where the data will be sent to) and
start the node off, which results in it sending the data.

6.3.2 The Java Side

On the java side PAICommands.java implements various instructions to help
send data and to trigger timers etc:

package pai.examples.ns2;

import pai.broker.CommandInterface;
import pai.broker.PAIAccessInterface;
import pai.api.PAIInterface;
import pai.net.DatagramSocket;
import pai.net.DatagramPacket;
import pai.net.InetAddress;
import pai.impl.PAITimer;
import pai.impl.Logging;
import pai.event.PAISocketEvent;

6.3. EXAMPLE 1: SENDING DATA FROM ONE NODE TO ANOTHER51

import pai.event.PAISocketListener;
import java.net.SocketException;
import java.io.IOException;

public class PAICommands implements CommandInterface, PAIAccessInterface,
PAISocketListener {

PAIInterface pai;
String sendTo;
DatagramSocket s;
PAITimer t;
int count=0;

public void init() {
try {

s = pai.addSocket(5555);
pai.addPAISocketListener(s,this);

} catch (SocketException e) {
System.out.println("Error opening socket");

}
catch (IOException ep) {

System.out.println("Error opening socket");
}

}

void start() {
timerTriggered(); // transmit first packet right away

}

public void dataReceived(PAISocketEvent sv) {
try {

++count;
byte b[] = new byte[15];
DatagramPacket p = new DatagramPacket(b,b.length);
pai.receive(s, p);
if (Logging.isEnabled()) {

System.out.println("PAICommands: Received" +
" PACKET NUMBER ----------------> " + count);
System.out.println("PAICommands: Received "
+ new String(p.getData()) +

" from " + p.getAddress().getHostAddress());
}

} catch (IOException ep) {
System.out.println("PAICommands: Error opening socket");

}
}

public void timerTriggered() {
try {

byte b[] = (new String("Hello Proteus " +

52 CHAPTER 6. USING PAI WITHIN JAVA AGENTS

String.valueOf(count)).getBytes());
DatagramPacket p =new DatagramPacket(b, b.length,
new InetAddress(sendTo), 5555);

pai.send(s,p);
} catch (IOException eh) {

System.out.println("Error Sending Data");
}

}

public String command(String command, String args[]) {
if (command.equals("init")) {

init();
return "OK";

}
else if (command.equals("setSendTo")) {

sendTo = args[0];
return "OK";

}
else if (command.equals("start")) {

start();
return "OK";

}
else if (command.equals("trigger")) {

timerTriggered();
return "OK";

}
else if (command.equals("cleanUp")) {

pai.cleanUp();
return "OK";

}

return "ERROR";
}

public void setPAI(PAIInterface pai) {
this.pai=pai;

}
}

Firstly, you’ll notice that PAICommands implements three interfaces:

• CommandInterface: so that it understands how to execute com-
mands, as described in the previous chapter.

• PAIAccessInterface: (see pai.broker.PAIAccessInterface) this inter-
face is a tagging mechanism that tells the subsystem that your Java
object wishes to use the JNI interface. Without this, your object can-
not use the efficient memory allocation that the subsystem provides for

6.3. EXAMPLE 1: SENDING DATA FROM ONE NODE TO ANOTHER53

managing all Java objects. You could in principle access PAI directly
but you’d have to manage pointers yourselves, which would be tedious.
Using this interface, the JavaBroker notifies you of the instance of the
pai interface by calling the implemented method from this interface,
called setPAI(PAIInterface pai), as illustrated. This allows you to
store the pai reference locally and use it within your Java object.

• PAISocketListener: this allows your class to be notified when data
arrives at a PAISocket. Briefly, within Java, you attach yourself (or
attach others) as a listener on an object and this results in the notifica-
tion of certain events when they arrive. To make the semantics clear,
you have to implement an interface which enables the source object
to notify you when its state changes. This is achieved generally by a
listener interface, which PAISocketListener implements. Java listen-
ers are an implementation of a callback mechanism. Within C++ you
have to point to actual functions, which Java you attach listeners. The
interface looks like this:

package pai.event;

public interface PAISocketListener {
public void dataReceived(PAISocketEvent event);

}

which contains one method, dataReceived that gets invoked when data
arrives at the socket. The dataReceived method passes a PAISocket
event, which contains details about the socket that issued the event
(i.e. you may be a listener to several sockets). Once this event is
received, you can use pai to retrieve the data, using the receive method
- which takes the socket as a parameter and a DatagramPacket, which
is a container to hold the incoming data (this is the standard Java
mechanism for doing this).

Briefly, the object is initialized by creating a socket on port 5555. We
then add ourselves as a listener for events from this socket. The start method
gets invoked when a start command is received from the NS2 TCL script, this
simply invokes the trigger function, which results in a data packets being sent
to the the sendTo NS2 node. The sendTo variable is set using the setSendTo
TCL command as described previously.

Within the dataReceived method, messages are printing our if logging is
enabled. There is a static class in pai.impl.Logging, which is set globally for
all classes within the JVM to turn on or off comments. If it is enabled then
you get a verbose output - the default is that it is set to on.

54 CHAPTER 6. USING PAI WITHIN JAVA AGENTS

6.4 Example 2: Using the Trigger Mechan-

sim

This is a Java example, which implements the ProtoApp scenario, the demon-
stration class for Protolib. Briefly, a trigger is set off once a second to tell
the Java object to send data to another node. When the data is received
by the receiving NS-2 node, another Java method is triggered allowing it to
read the data using the PAISocketListener interface.

The actual trigger mechanism is implemented in C++ but this then trig-
gers a method in the Java object to tell it to read the data. This example also
uses the PAICommands class. When the C++ trigger times out, it sends a
’trigger’ command to the Java object, which results in the timerTriggered()
method being called. This is equivalent functionality to ProtoApp, but in
Java. However, the actual interface to the timer is set within the NS2 TCL
script and not the C++ class, enabling the programmer to change the timer’s
parameters without having to recompile the whole of NS2.

6.4.1 The TCL Side

The following is the TCL script part of the implementation, which creates
two JavaAgent NS2 nodes attaches the PAICommands Java object to them,
initializes them and then sets up the node that will receive the data by
invoking the setSendTo command on the first node - node 0 sends data to
node 1 in this example. We then start a timer by using

$ns_ at 0.0 "$p1 startTimer 1 -1"

which sets off a timer that times out once per second and runs forever (i.e.
-1 flag). The timer is stopped at the end of the simultation. Here is the TCL
script:

Create simulator instance
set ns_ [new Simulator]

Create two nodes
set n1 [$ns_ node]
set n2 [$ns_ node]

Put a link between them
$ns_ duplex-link $n1 $n2 64kb 100ms DropTail
$ns_ queue-limit $n1 $n2 100
$ns_ duplex-link-op $n1 $n2 queuePos 0.5
$ns_ duplex-link-op $n1 $n2 orient right

6.4. EXAMPLE 2: USING THE TRIGGER MECHANSIM 55

puts "Creating PAI Broker Agents ..."
Create two Protean example agents and attach to nodes
set p1 [new Agent/JavaAgent]
$ns_ attach-agent $n1 $p1

set p2 [new Agent/JavaAgent]
$ns_ attach-agent $n2 $p2

puts "CREATED OK"

Initialize each broker telling it what its NS2 address is

puts "In script: Initializing ..."

$ns_ at 0.0 "$p1 initAgent"
$ns_ at 0.0 "$p2 initAgent"

$ns_ at 0.0 "$p1 setClass
/Users/scmijt/Apps/nrl/p2ps-ns2/classes pai.examples.ns2.PAICommands"
$ns_ at 0.0 "$p2 setClass
/Users/scmijt/Apps/nrl/p2ps-ns2/classes pai.examples.ns2.PAICommands"

puts "Starting simulation ..."

$ns_ at 0.0 "$p1 javaCommand init"
$ns_ at 0.0 "$p2 javaCommand init"

$ns_ at 0.0 "$p1 javaCommand setSendTo [$n2 node-addr]"

$ns_ at 0.0 "$p1 javaCommand start"

The timer is started within C++ code NOT Java but the
parameters are specified here

$ns_ at 0.0 "$p1 startTimer 1 -1"

Stop
$ns_ at 9.0 "$p1 stopTimer"
$ns_ at 9.0 "$p2 stopTimer"

#Clean up objects

$ns_ at 10.0 "$p1 cleanUp"
$ns_ at 10.0 "$p2 cleanUp"

$ns_ at 10.0 "finish $ns_"

proc finish {ns_} {

56 CHAPTER 6. USING PAI WITHIN JAVA AGENTS

$ns_ halt
delete $ns_
}

$ns_ run

This example, will run the timer once per second (well, NS2 second any-
way - which is non real-time so in effect one second will be microseconds)
and iterate for 10 iterations as specified by the NS2 time-stepping as shown.

6.5 Example 3: Sending Data Using Multi-

cast

A Java example, which also implements the ProtoApp scenario but this timer
uses a multicast address to send the data between the nodes. The first
node sends the data to the multicast address and the second node listens to
this address and gets notified when something happens. This example uses
the pai.examples.ns2.MulticastTimerDemo Java class to implement the Java
functionality.

6.5.1 The TCL Side

The following is the TCL script part of the implementation, which creates
a muticast enabled NS2 and creates a multicast address for communica-
tion. The multicast address to be used must be specified in NS2 and then
passed to the Java objects so they know which address to use i.e. by using
the setGroupAddress java TCL script command as illustrated below. Two
JavaAgent NS2 nodes are created and attach a MulticastTimerDemo object:

Create multicast enabled simulator instance
set ns_ [new Simulator -multicast on]
$ns_ multicast

Create two nodes
set n1 [$ns_ node]
set n2 [$ns_ node]

Put a link between them
$ns_ duplex-link $n1 $n2 64kb 100ms DropTail
$ns_ queue-limit $n1 $n2 100
$ns_ duplex-link-op $n1 $n2 queuePos 0.5
$ns_ duplex-link-op $n1 $n2 orient right

6.5. EXAMPLE 3: SENDING DATA USING MULTICAST 57

Configure multicast routing for topology
set mproto DM
set mrthandle [$ns_ mrtproto $mproto {}]
if {$mrthandle != ""} {

$mrthandle set_c_rp [list $n1]
}

5) Allocate a multicast address to use
set group [Node allocaddr]

puts "Creating Java Broker Agents ..."
Create two Protean example agents and attach to nodes
set p1 [new Agent/JavaAgent]
$ns_ attach-agent $n1 $p1

set p2 [new Agent/JavaAgent]
$ns_ attach-agent $n2 $p2

puts "CREATED OK"

Initialize C++ agents

puts "In script: Initializing ..."

$ns_ at 0.0 "$p1 initAgent"
$ns_ at 0.0 "$p2 initAgent"

#set up the class

$ns_ at 0.0 "$p1 setClass
/Users/scmijt/Apps/nrl/p2ps-ns2/classes pai.examples.ns2.MulticastTimerDemo"
$ns_ at 0.0 "$p2 setClass
/Users/scmijt/Apps/nrl/p2ps-ns2/classes pai.examples.ns2.MulticastTimerDemo"

puts "Starting simulation ..."

$ns_ at 0.0 "$p1 javaCommand setGroupAddress $group"

$ns_ at 0.0 "$p1 javaCommand init"
$ns_ at 0.0 "$p2 javaCommand init"

$ns_ at 0.0 "$p1 javaCommand start"

The timer is started within C++ code NOT Java but the
parameters are specified here

$ns_ at 0.0 "$p1 startTimer 1 -1"

Stop

58 CHAPTER 6. USING PAI WITHIN JAVA AGENTS

$ns_ at 9.0 "$p1 stopTimer"
$ns_ at 9.0 "$p2 stopTimer"

#Clean up objects

$ns_ at 10.0 "$p1 cleanUp"
$ns_ at 10.0 "$p2 cleanUp"

$ns_ at 10.0 "finish $ns_"

proc finish {ns_} {
$ns_ halt
delete $ns_
}

$ns_ run

We then initialize the two JavaAgent NS2 nodes start the first node. This
results in the first node sending a data packet to the chosen Multicast address,
which results in the second node receiving notification of this transfer. The
timer is then kicked off, which repeats this process 10 times

6.5.2 The Java Side

On the java side MulticastTimerDemo.java implements various commands,
rather similar to the PAICommands class, except that it replaces the set-
Sender function with the Multicast address, enabling all nodes to talk to a
central address. This enables nodes to automatically send data to collections
of nodes and it is this process that will enable P2PS to discover the address
of other nodes using its discovery mechanisms. The code looks like this:

package pai.examples.ns2;

import pai.broker.CommandInterface;
import pai.broker.PAIAccessInterface;
import pai.broker.JavaBroker;
import pai.api.PAIInterface;
import pai.net.DatagramSocket;
import pai.net.DatagramPacket;
import pai.net.InetAddress;
import pai.net.MulticastSocket;
import pai.impl.PAITimer;
import pai.impl.Logging;
import pai.event.PAISocketEvent;
import pai.event.PAISocketListener;

6.5. EXAMPLE 3: SENDING DATA USING MULTICAST 59

import java.net.SocketException;
import java.io.IOException;

/**
* @author Ian Taylor.
* A demo of a NS2 Java Object that
*/
public class MulticastTimerDemo implements CommandInterface, PAIAccessInterface,

PAISocketListener {
PAIInterface pai;
MulticastSocket s;
PAITimer t;
int count=0;

public void init() {

try {
s = new MulticastSocket(5555);
pai.addPAISocketListener(s,this);
pai.joinGroup(s,
new InetAddress(JavaBroker.getMulticastAddress()));

} catch (SocketException e) {
System.out.println("Error opening socket");

}
catch (IOException ep) {

System.out.println("Error opening socket");
}

}

void start() {
timerTriggered(); // transmit first packet right away
}

public void dataReceived(PAISocketEvent sv) {
try {

System.out.println("Receiving ----------------------------");
++count;
byte b[] = new byte[15];
DatagramPacket p = new DatagramPacket(b,b.length);
pai.receive(s, p);
if (Logging.isEnabled()) {

System.out.println("PAICommands: Received " +
"PACKET NUMBER ----------------> " + count);

System.out.println("PAICommands: Received "
+ new String(p.getData()) +

" from " + p.getAddress().getHostAddress());
}

} catch (IOException ep) {

60 CHAPTER 6. USING PAI WITHIN JAVA AGENTS

System.out.println("PAICommands: Error opening socket");
}

}

public void timerTriggered() {
try {

byte b[] = (new String("Hello Proteus " +
String.valueOf(count)).getBytes());

System.out.println("Address is " +
JavaBroker.getMulticastAddress());

DatagramPacket p =new DatagramPacket(b, b.length,
new InetAddress(JavaBroker.getMulticastAddress()), 5555);

pai.send(s,p);
} catch (IOException eh) {

System.out.println("Error Sending Data");
}

}

public String command(String command, String args[]) {
if (command.equals("init")) {

init();
return "OK";

}
else if (command.equals("start")) {

start();
return "OK";

}
else if (command.equals("trigger")) {

timerTriggered();
return "OK";

}
else if (command.equals("cleanUp")) {

pai.cleanUp();
return "OK";

}
return "ERROR";

}

public void setPAI(PAIInterface pai) {
this.pai=pai;

}
}

The first thing to notice here is that we are not using the PAI Java inter-
face to create our Multicast socket, but we are using the MulticastSocket class.
The MulticastSocket class we are using here is the PAI re-implementation of
the java.io.MulticastSocket class for use with our Java PAI interface. The
actual implementation of MulticastSocket simply calls the PAI interface in

6.6. CONCLUSION 61

order to create the appropriate socket, that is in this case, it creates a normal
DatagramSocket by using the default constructor and sets Multicast to true
on this socket so that it can join the multicast group address.

The actual multicast group address being used is set from the TCL script,
as described. Java NS2 object gain access to this address by using the:

JavaBroker.getMulticastAddress();

static method call. This enables any Java object within this JVM to gain
access to the default Multicast address that it should use. P2PS uses this
same address also when communicating with other P2PS nodes, as we will
see in Chapt. ??. Here therefore, we join the Multicast group by issuing the
following PAI command:

pai.joinGroup(s, new InetAddress(JavaBroker.getMulticastAddress()));

The rest of the class simply implements the same functionality as the
PAICommands class discuss earlier in this chapter.

6.6 Conclusion

In this chapter, the Java PAI interface was discussed. An overview of the
architecture was given and a brief description of how the classes implement
this functionality. We then outlined three examples, which show how one
would send data between NS2 nodes, how one would use the timing interface
to send repeated calls and how one would use a Multicast address to send
data to any nodes that are listening to this address.

62 CHAPTER 6. USING PAI WITHIN JAVA AGENTS

Chapter 7

P2PS (Peer-to-Peer Simplified)

This chapter was written by Ian Wang (ian@wangy.co.uk) and gives an
overview of the P2PS middleware.

7.1 Introduction

P2PS (Peer-to-Peer Simplified) is a lightweight peer-to-peer infrastructure.
As its name suggests, P2PS aims to provide a simple infrastructure on which
to develop peer-to-peer style applications, hiding the complexity of other
similar architectures such as JXTA [4] and JINI [10].

As the P2PS infrastructure is based on XML discovery and communi-
cation, it is independent of any implementation language and computing
hardware. Assuming that suitable P2PS implementations exist, it should
be possible to form a peer network that includes everything from super-
computer peers to PDAs. Furthermore, communication within P2PS is not
tied to any single transport protocol, such as TCP/IP, and can be extended
to include new protocols, such as Bluetooth. That said, the current reference
implementation of P2PS is written in Java and includes endpoint resolvers
for the TCP and UDP.

Although P2PS is not an implementation of the JXTA protocols, its ar-
chitecture is inspired by that of JXTA. However, P2PS focuses only on the
core elements required for peer discovery and pipe-based communication, and
hopefully avoids the complexity problems some users have experienced with
JXTA (in fact, the reason P2PS was developed in the first place was due to
problems experienced using JXTA).

In Section 7.2 of this the paper we outline the P2PS infrastructure and
the extensible XML advertisements and queries it employs. In Section 7.3 we
go on to describe the Java reference implementation of this infrastructure,

63

64 CHAPTER 7. P2PS (PEER-TO-PEER SIMPLIFIED)

however we note that this is only an example and that other P2PS imple-
mentations may employ different architectures. We summarize the content
of this paper in Section 7.4.

More information on P2PS and downloads of the Java reference imple-
mentation can be obtained from:

http://www.trianacode.org

7.2 P2PS Architecture

At an abstract level, a P2PS network can simply be seen as a set of peer
implementations connected together by endpoint-to-endpoint communication
channels. It is not necessary that all the peers in the network use the same
P2PS implementation or run on the same platform. It is also not necessary
that all the communication channels use the same messaging protocol. The
only requirement for a peer to set-up a communication channel is that it
knows the endpoint address for the channel on the receiving peer and the
protocol expected by the receiving endpoint.

The abstract network described above is not especially useful or dynamic,
so P2PS defines a set of extensible advertisements that allow peers to describe
themselves and their endpoints to other peers, and a set of extensible queries
for querying advertisements published by other peers. We outline the stan-
dard advertisement and query types in Sections 7.2.1 and 7.2.2, and outline
how peers handle queries in Section 7.2.5.

P2PS also defines a standard mechanism for publishing and discovering
advertisements based on discovery pipes and rendezvous peers; we describe
this in Sections 7.2.3 and 7.2.4. Finally, we discuss endpoints and how pipe
advertisements are resolved into endpoint-to-endpoint communication chan-
nels in Sections 7.2.6 and 7.2.7.

7.2.1 Advertisements

A P2PS advertisement is an XML document with the root name denoting
the type of advertisement (e.g. PipeAdvertisement). In addition to its type,
every advertisement contains two default XML elements:

<?xml version="1.0" encoding="UTF-8"?>

<AdvertisementType>

<advertId>a unique id for the advert</advertId>

<peerId>the unique id for the peer that issued the

advert</peerId>

7.2. P2PS ARCHITECTURE 65

</AdvertisementType>

Additional elements are defined for different advertisement types. The
standard P2PS advertisement types are:

Pipe Advertisement - A pipe is a named virtual communication channel
that is only bound to specific endpoints at connection time (using an
endpoint resolver, see Section 7.2.7). While multiple pipes can share
the same name, every pipe is also identified by a unique id. A pipe also
has a specified type, the basic pipe types are:

standard - Assumed to be unidirectional, unreliable and not secure;
the actual properties of the pipe depend on the transport protocol
that it is bound over.

bidirectional - The same as a standard pipe but with bidirectional
communication.

discovery - Allows adverts/queries to be broadcast to and received
from other discovery pipes within a certain subnet (referred to as
the discovery subnet). A typical implementation of a discovery
pipe would be UDP multicast, in which case the scope of the dis-
covery subnet would be determined by the local multicast range.
We discuss discovery pipes further in Section 7.2.1.

Obvious extensions to the standard pipe types include reliable and
secure pipes.

Service Advertisement - A service is simply a named collection of pipes.
As with pipes, while multiple services can share the same name, every
service is also identified by a unique id. P2PS services should not be
confused with the discovery service, rendezvous service and pipe service
described in Sections 7.3; the latter are elements of the Java reference
implementation rather than part of the P2PS architecture.

Endpoint Advertisement - An endpoint is an address for sending and
receiving data using a specified endpoint protocol.

Endpoint Resolver Advertisement - An endpoint resolver is itself an
endpoint that when queried (with an Endpoint Query) returns the
endpoint address for a pipe. An endpoint resolver can answer end-
point queries for more than one peer and for more than one protocol.
We look at endpoint resolution further in Section 7.2.7.

66 CHAPTER 7. P2PS (PEER-TO-PEER SIMPLIFIED)

Rendezvous Advertisement - A rendezvous is a specialized peer that
provides query forwarding endpoints. Other rendezvous peers (usu-
ally from separate discovery subnets) forward the queries that they
receive to these endpoints. This mechanism allows queries to be prop-
agated across multiple discovery subnets. The basic protocol is that
only queries, not basic advertisements, are forwarded by rendezvous
peers; we discuss this further in Section 7.2.3,

The XML for all the above adverts can be extended to include additional
information if required. Also, if required, completely new advertisement
types can be created and advertised/discovered. In Appendix 7.6 we outline
the XML for all the standard advertisement types.

7.2.2 Queries

Queries are specialized advertisements that are used to locate other adver-
tisements that match the query parameters. For example, a peer wishing to
discover all pipes named ‘serverPipe’ would publish a Pipe Query with the
queryPipeName element set to ‘serverPipe’.

In addition to the standard advertisement XML, a query also includes
the following elements:

query - tags the advertisement as a query and specifies which type of ad-
vertisements this query is interested in (e.g. ‘PipeAdvertisement’). If
the query is interested in multiple advertisement types then multiple
query elements should be used.

replyPipeAdvertisement - an optional element specifying the pipe that
replies to this advertisement should be sent to.

replyEndpointAddress - an optional element specifying the endpoint ad-
dress that replies to this advertisement should be sent to.

It is expected that a query should include either a reply pipe advertise-
ment or a reply endpoint address to which any advertisements that ‘match’
the query should be sent. This return pipe/endpoint is generally located
on the issuing peer, but this is not a requirement. As queries are them-
selves advertisements they can be broadcast in the same manor is standard
advertisements (see Section 7.2.3).

There are four standard P2PS queries for retrieving advertisements, these
are:

7.2. P2PS ARCHITECTURE 67

Pipe Query - Query for Pipe Advertisements by pipe name, pipe ID and
peer ID.

Service Query - Query for Service Advertisements by service name and
peer ID.

Endpoint Query - Query for Endpoint Advertisements by pipe ID and
endpoint protocol.

Endpoint Resolver Query - Query for Endpoint Resolver Advertise-
ments by pipe type, peer ID and endpoint protocol.

As with advertisements, the standard queries can be extended with addi-
tional tags or new completely new query types developed. Whether extending
a standard query or creating a new query type the P2PS query naming con-
ventions must be followed as this is used by Discovery Services to match
advertisements with queries. The P2PS query naming conventions are:

• An element in the query named queryPipeName will match elements
named pipeName or PipeName in the advertisement. If there are mul-
tiple queryPipeName elements in the query, or multiple pipeName el-
ements in the advertisement then there only need be a single match
between the sets.

• If the are multiple query elements, for example queryPipeName and
queryPipeID, then there must be a match in the advertisement for each
query element.

• All matching is case sensitive.

We look at how all advertisements (including queries) are published and
discovered in Sections 7.2.3 and 7.2.4, and then look at how queries are
handled by peers in Section 7.2.5. In Appendix 7.7 we outline the XML for
all the standard query types.

7.2.3 Advertisement and Discovery

There are no restrictions on how the advertisements outlined in the previous
sections are passed between P2PS peers. It would therefore be perfectly
acceptable for an advertisement to be e-mailed between peers or to be passed
on a floppy disc. However, P2PS does define a standard discovery mechanism
based on the discovery pipe type mentioned in Section 7.2.1.

68 CHAPTER 7. P2PS (PEER-TO-PEER SIMPLIFIED)

A discovery pipe is a special pipe that allows a peer to broadcast adver-
tisements to other peers within a certain subnet (referred to as the discovery
subnet), and also to receive advertisements broadcast by other peers within
this subnet. It is up to individual endpoint protocols how this discovery pipe
concept is implemented, and the implementation determines the discovery
subnet scope. For example, in the UDP endpoint protocol outlined in Sec-
tion 7.3.5, the discovery pipe endpoints are multicast sockets joined to the
same group (232.2.2.2), and therefore all the advertisement sent using a dis-
covery pipe are received by all other discovery endpoints within the multicast
range. In this example the scope of the discovery subnet coincides with the
UDP multicast range. Note that it is not required that an endpoint protocol
provide a discovery pipe implementation.

Although the peers in a discovery subnet can discover each others adver-
tisements, a mechanism is also required to link separate discovery subnets.
In P2PS this linking is achieved using specialized rendezvous, as we shall
discuss in the next section.

7.2.4 Rendezvous Peers

P2PS defines a mechanism for linking discovery subnets based on queries
being forwarded between special rendezvous peers. Each rendezvous peer
provides at least one endpoint (see Section 7.2.6) to which other rendezvous
peers (usually from other discovery subnets) directly forward queries that
they discover. We illustrate several discovery subnets linked through ren-
dezvous peer connections in Figure 7.1.

When a rendezvous peer discovers a new query (either via its local dis-
covery subnet or forwarded from another rendezvous peer) it should do three
things:

• Forward the query directly to the other rendezvous peers it knows
about.

• Store a copy of the query in its local cache.

• Check whether any advertisement in its local cache matches the query,
and if so broadcast the query within its local discovery subnet.

When a rendezvous peer discovers a new advertisement via its local dis-
covery subnet it should do the following:

• Store a copy of the advertisement in its local cache

7.2. P2PS ARCHITECTURE 69

Rendezvous
Peer

Non-Rendezvous
Peer

Discovery
Subnet

Direct Pipe

Figure 7.1: Discovery subnets linked through rendezvous peer connections.

• Check whether any query in its local cache matches the advertisement,
and if so broadcast that query within its local discovery subnet.

In other words, a rendezvous peer does not answer queries itself; instead
it broadcasts the relevant query within its discovery subnet and it is up to
the peer that issued the advertisement to provide the answer directly. It
is important to note that only queries, not standard advertisements, are
forwarded between rendezvous peers. We look at how peers handle queries
in the next section.

7.2.5 Query Handling

When a peer discovers a query (i.e. receives a query via its discovery pipe),
it is expected to answer that query with any matching advertisements that
it have been published locally. So, for example, if a peer receives a query
asking for pipe advertisements with the pipe name ‘serverPipe’ and a pipe
advertisement with the pipe name ‘serverPipe’ was published locally, then
that pipe advertisement should be sent as a reply to the query. The P2PS
query matching conventions were described in Section 7.2.2.

As mentioned in Section 7.2.2, a query should either include a reply ad-
dress in the form of a pipe advertisement or an endpoint address. The re-
plying peer should therefore try to connect either an output pipe/output

70 CHAPTER 7. P2PS (PEER-TO-PEER SIMPLIFIED)

endpoint to this reply address and send all the matching advertisements via
this pipe/endpoint.

7.2.6 Endpoints

In P2PS an endpoint is specified by its endpoint address and the endpoint
protocol that it follows. An endpoint is typically a port on a P2PS peer
and the endpoint address is the IP address and port number of that port;
however other endpoint implementations, such as an email address endpoint,
are equally valid.

Both the endpoint address and endpoint protocol are specified as simple
strings, with the endpoint protocol indicating the endpoint address format,
the message format, and the transport mechanism used. For example, when
the protocol is ‘UDP’ (see Section 7.3.5), the endpoint address takes the form
IP Addeess:Port Number and the messages are sent as datagram packets with
an XML header.

A peer can obviously only send to endpoint addresses that use protocols
that it recognizes. However, as we shall discuss in the next section, pipes are
only bound to specific endpoints at connection time and can operate over
multiple protocols.

7.2.7 Pipes and Endpoint Resolution

A pipe is a virtual communication channel that is only bound to specific
endpoints at connection time. We refer to the process of determining an
endpoint address for a pipe from its pipe id as endpoint resolution.

An endpoint resolver is an endpoint itself that, when sent an endpoint
query, returns an endpoint address for the pipe id specified in the query
(assuming it knows an endpoint for that pipe). Note the returned endpoint
could either be static or dynamically created at query time.

Normally a peer will provide and advertise an endpoint resolver that can
resolve endpoints on the pipes advertised by the peer; however this is not
essential, and an alternative approach, such as a centralized endpoint resolver
that provides endpoint resolution for multiple peers, would be equally valid.

As well as the id of the pipe that an endpoint is required for, an endpoint
query also specifies the endpoint protocol the returned endpoint should un-
derstand. So, for example, an endpoint query could ask for an ‘UDP’ end-
point or for a ‘TCP’ endpoint.

The ids of the peers a resolver provides endpoint addresses for, and the
endpoint protocol of those endpoints, are specified in the endpoint resolver

7.3. P2PS IMPLEMENTATION 71

advertisement. It is allowed for multiple resolvers to provide endpoint resolu-
tion for the same peer, for instance one resolver could return ‘UDP’ endpoint
addresses and another ‘TCP’ endpoint addresses. Also allowed would be an
endpoint resolver that provides a relay service, i.e. returns the address of an
endpoint that simple forwards the messages it receives via another protocol
to the actual pipe endpoint. The relay service may itself use an endpoint
resolver to determine the actual pipe endpoint.

To clarify, for a peer wishing to connect to the pipe specified in a pipe
advertisement, a standard endpoint resolution process would be:

• Find one or more endpoint resolvers for the peer that advertised the
pipe. Endpoint resolvers can be discovered by publishing an endpoint
resolver query. Note that it is wise for a peer to keep a cache of the
endpoint resolver advertisements that it has discovered.

• Send an endpoint query for the required pipe and endpoint protocol to
each of the endpoint resolvers.

• If a queried endpoint resolver knows an endpoint for the specified pipe
then it will send an endpoint advertisement for the endpoint via the
return endpoint/pipe specified in the endpoint query. The connecting
peer can then establish the pipe using this endpoint address. Note that
it is possible for a peer to receive multiple endpoint replies; in this case
it is up to the peer to decide which one to use.

7.3 P2PS Implementation

The P2PS infrastructure is based on XML communication and discovery
protocols, and therefore is not tied to any particular implementation language
or operating system (see Section 7.2). However, a reference implementation
has been developed in Java, and in this section we outline the main elements
of this implementation.

We illustrate the overall architecture of the Java reference implementation
in Figure 7.2. This implementation is built on five main interfaces:

Peer - Peer is a container interface that allows the application access to the
discovery service, rendezvous service and pipe service interfaces, and
also to the advertisement factory.

Discovery Service - The discovery service allows the application to pub-
lish advertisements/queries. It also allows the application to add dis-
covery listeners that are notified when advertisements/queries are dis-
covered.

72 CHAPTER 7. P2PS (PEER-TO-PEER SIMPLIFIED)

TCP Resolver ??? Resolver

Discovery
Service

Rendezvous
Service

P2PS Peer

Pipe
Service

UDP Resolver

Network
UDP TCP ???

Figure 7.2: The architecture of the P2PS Java reference implementation.

Rendezvous Service - If the peer is running as a rendezvous then the ren-
dezvous service allows the peer to be connected to other rendezvous
peers. The rendezvous service handles forwarding queries to/receiving
queries from other rendezvous peers.

Pipe Service - The pipe service allows the application (and the discovery
and rendezvous services) to create input pipes/connect output pipes.
Endpoint resolvers are registered with the pipe service and they perform
the actual endpoint creation and resolution.

Endpoint Resolver - Endpoint resolvers create the actual input endpoints
for pipes, and also resolve and connect to remote endpoints. There may
be multiple endpoint resolvers registered with the pipe service, each
creating and resolving endpoints in different endpoint protocols.

In addition to the five above interfaces, there is an Advertisement Factory
class for constructing advertisement objects from their XML representation.
The discovery service, rendezvous service and pipe service mentioned above
are elements of the reference implementation and should not be confused
with the P2PS notion of a service discussed in Section 7.2.1.

As the components described above are written as interfaces developers
are free to implement their own versions. In particular it is expected that

7.3. P2PS IMPLEMENTATION 73

new implementations of the endpoint resolver interface will be developed to
cover additional transport protocols (such as Bluetooth).

In the next sections we briefly describe the key methods contained in
the peer (Section 7.3.1), discovery service (Section 7.3.2), rendezvous ser-
vice (Section 7.3.3), pipe service (Section 7.3.4) and endpoint resolver (Sec-
tion 7.3.5) interfaces. We discuss peer configuration in Section 7.3.6. In
Appendix 7.5 we give the Java code for a simple client/server application
example.

7.3.1 Peer

Peer is a simple container interface that allows an application access to the
discovery service, rendezvous service and pipe service, and also to the adver-
tisement factory. The methods in peer are:

init() - Initializes the peer by calling the initialization methods on the other
components. This method must be called before any of the other meth-
ods are called.

getPeerID() - Returns the unique id for the peer.

getAdvertisementFactory() - Returns the advertisement factory.

getDiscoveryService() - Returns an interface to the discovery service.

getRendezvousService() - Returns an interface to the rendezvous service
(or null if the peer is not acting as a rendezvous).

getPipeService() - Returns an interface to the pipe service.

The reference peer implementation can be constructed using either a de-
fault configuration, a custom configuration, or using a configuration window.
We discuss peer configuration further in Section 7.3.6.

7.3.2 Discovery Service

The discovery service allows the application to publish advertise-
ments/queries, and also to add discovery listeners that are notified when
advertisements/queries are discovered. It is also the responsibility of the
discovery service the answer queries that are received through the discovery
pipe, as described in Section 7.2.5.

The methods in the discovery service interface are:

74 CHAPTER 7. P2PS (PEER-TO-PEER SIMPLIFIED)

init() - Initializes the discovery service. Discovery service initialization in-
volves the following:

• Create a discovery pipe by calling the createInputPipe() method
on the pipe service with a pipe advertisement of type ‘discovery’.

• Create an input pipe that is used to receive query replies. This is
also done using the createInputPipe() method on the pipe service,
but with a pipe advertisement of type ‘standard’.

• Publish an advertisement for each of the endpoint resolvers. This
is done using the getPipeResolvers() method on the pipe service,
and then the getAdvertisement() method on each of the resolvers.

publish(Advertisement advert) - Publishes the advert by sending it us-
ing the discovery pipe. If the advertisement is a query and a reply
pipe/reply endpoint is not already specified then the reply pipe for the
query is set to the discovery services reply pipe.

addDiscoveryListener(DiscoveryListener listener) - Adds a discovery
listener to the discovery service. Discovery listeners are notified every
time an advertisement/query is received on the discovery pipe.

removeDiscoveryListener(DiscoveryListener listener) - Removes a
discovery listener from the discovery service.

7.3.3 Rendezvous Service

If the peer is acting as a rendezvous then the rendezvous service is responsi-
ble for maintaining connections with other rendezvous peers and forwarding
queries discovered by the discovery service. The rendezvous service provides
at least one endpoint so that it can receive queries forwarded by other ren-
dezvous peers

The rendezvous service maintains a cache of all queries it receives, and
when an advertisement matching a cached query is discovered by the discov-
ery service the query is republished (using the discovery service). The role
of rendezvous peers is discussed in greater detail in Section 7.2.4.

The methods in the rendezvous service interface are:

init() - Initializes the rendezvous service. This involves using the relevant
endpoint resolvers to create the rendezvous endpoints, and also using
the discovery service to publish a rendezvous advertisement for this
service.

7.3. P2PS IMPLEMENTATION 75

connectToRendezvous(EndpointAddress addr) - Connects the ren-
dezvous service to the specified endpoint address (using the relevant
endpoint resolver). Once connected an advert for the rendezvous ser-
vice is forwarded using the endpoint so that a return connection can
be established. Also, all the queries cached by the rendezvous service
are forwarded to the endpoint.

getLocalRendezvousAddresses() - Returns an array of the local ren-
dezvous endpoints.

getRemoteRendezvousAddresses() - Returns an array of the remote
rendezvous endpoints the rendezvous service is connected to.

Due to the close connections between the rendezvous service and the
discovery service, in the reference implementation the rendezvous service is
an extension of the discovery service.

7.3.4 Pipe Service

The pipe service provides an interface that allows applications to create and
connect pipes. However, the pipe service simply maintains a list of endpoint
resolvers and the actual endpoint creation and connection is delegated to
these resolvers (see Section 7.3.5).

The methods in the pipe service interface are:

init() - Initializes the pipe service.

createInputPipe(PipeAdvertisement pipead) - Creates an input pipe
of the type specified in the pipe advertisement. This is done by asking
all the endpoint resolvers that handle the pipe type to establish input
endpoints for the pipe.

connectOutputPipe(PipeAdvertisement pipead) - Creates an output
pipe connected to the advertised pipe. This is done by asking all the
endpoint resolvers that handle the pipe type to attempt to resolve and
connect an output endpoint to an input endpoints for the pipe. The
first output endpoint successfully connected by any resolver is used for
the output pipe.

register(EndpointResolver resolver) - Registers an endpoint resolver to
create input endpoints and resolve/connect output endpoints.

unregister(EndpointResolver resolver) - Unregisters an endpoint re-
solver.

76 CHAPTER 7. P2PS (PEER-TO-PEER SIMPLIFIED)

getEndpointProtocols() - Returns an array of the endpoint protocols for
which there is at least one registered endpoint resolver.

getPipeResolvers() - Returns an array of the registered endpoint re-
solvers.

getPipeResolver(String protocol) - Returns an endpoint resolver for
the specified endpoint protocol (or null if there are none registered).

7.3.5 Endpoint Resolver

Endpoint resolvers are responsible for creating input endpoints and for re-
solving pipe ids into connected output endpoints (see Section 7.2.7). Each
endpoint resolver implementation handles endpoint creation/connection for
one or more endpoint protocols; for example, a pipe service could use one
endpoint resolver implementation for creating/connecting ‘TCP Protocol’
endpoints and a different resolver implementation for creating/connecting
‘UDP Protocol’ endpoints.

The methods in the endpoint resolver interface are:

init(Peer peer, Config config) - Initializes the endpoint resolver. This
initializes the resolver endpoint to which other endpoint resolvers send
their endpoint queries and their replies to endpoint queries issued by
the resolver.

createInputEndpoint(String pipeid, String pipetype) - Creates and
returns an input endpoint of the specified pipe type and associated
with the specified pipe id.

createInputEndpoint(String pipeid, EndpointAddress address) -
Creates and returns an endpoint bound to the specified endpoint
address, such as when creating an rendezvous endpoint. The protocol
and type specified in the endpoint address must be understood by the
endpoint resolver or an exception is thrown.

connectOutputEndpoint(String pipeid, EndpointAddress address) -
Creates and returns an endpoint connected to the specified endpoint
address; the created endpoint is bound to the specified pipe id. The
address being connected to must implement a protocol understood by
this resolver or an exception is thrown.

resolveEndpoint(String pipeid, EndpointAddress resolveraddr) -
Asks the endpoint resolver to resolve an endpoint for the specified

7.3. P2PS IMPLEMENTATION 77

pipe id. This is done by sending an endpoint query for the specified
pipe id to the specified resolver address. Any replies to the endpoint
query are received through the resolver endpoint and notified to all
the endpoint resolution listeners.

addEndpointResolutionListener(EndpointResolutionListener listener) -
Adds an endpoint resolution listener. Endpoint resolution listeners are
notified each time an endpoint advertisement is received on the resolver
endpoint (in reply to an endpoint query issued by the resolver).

removeEndpointResolutionListener(EndpointResolutionListener listener) -
Removes an endpoint resolution listener from being notified when a
endpoint advertisement reply is received

isInputPipesEnabled(String type) - Returns true if the endpoint re-
solver can create input endpoints of the specified type.

setInputPipesEnabled(String type, boolean state) Sets whether the
endpoint resolver can create input endpoints of the specified type. Note
that only types the resolver can handle can be enabled/disabled.

isOutputPipesEnabled(String type) - Returns true if the endpoint re-
solver can create output endpoints of the specified type.

setOutputPipesEnabled(String type, boolean state) - Sets whether
the endpoint resolver can create output endpoints of the specified type.
Note that only types the resolver can handle can be enabled/disabled.

getPipeTypes() - Returns an array of all the pipe types the resolver can
handle (whether they are enabled or not).

getResolverEndpoint() - Returns the resolver endpoint for the endpoint
resolver. The resolver endpoint receives endpoint queries from other
resolvers and also replies to endpoint queries issued by the resolver.

getResolverEndpointAddress() - Returns the endpoint address for the
resolver endpoint.

getEndpointProtocols() - Returns an array of the endpoint protocols for
which the resolver can create/connect endpoints.

getResolverForPeerIDs() - Returns an array of the peers the resolver can
resolve endpoint addresses for. In general an endpoint resolver only
resolves endpoint addresses for the peer it is connected to, but it is

78 CHAPTER 7. P2PS (PEER-TO-PEER SIMPLIFIED)

possible for a resolver to handle resolution for multiple peers, e.g. when
the resolver is acting as a relay through a firewall.

getAdvertisement() - Returns an endpoint resolver advertisement for the
resolver. The endpoint resolver advertisement specifies the resolver
endpoint address, the endpoint protocols handled and the peer ids han-
dled.

In the reference Java implementation there are endpoint resolvers for two
protocols: UDP and TCP. We look at these implementations in Sections 7.3.5
and 7.3.5.

UDP Resolver and Endpoints

The UDP resolver and endpoints implement packet based communication
using Javas datagram sockets. In this protocol each endpoint is a separate
port; endpoint addresses specified in the form:

IP_Address:Port_Number

The maximum length of a datagram packet in this protocol is 50000 bytes,
with long messages being split over multiple packets. The first 200 bytes of
each packet contain an XML header, this takes the form:

<?xml version="1.0" encoding="UTF-8"?>

<Header>

<id>the unique message id</id>

<len>the total length of the message data</len>

<pIdx>the packet index </pIdx>

</Header>

The rest of the packet bytes contain the message data (or a section of the
message data if the data is split over multiple packets).

In addition to standard input and output endpoints, the UDP resolver
allows endpoints to be created for discovery pipes. When the pipe type is
‘discovery’ a multicast socket is instantiated on port 2221 and joined to the
multicast group on inet address 232.2.2.2. Note that endpoints for discovery
pipes are bidirectional so messages can be sent and received.

7.3. P2PS IMPLEMENTATION 79

TCP Resolver and Endpoints

The TCP resolver and endpoints implement stream based communication
using Javas standard sockets. In this protocol multiple endpoints can share
a single port, with each endpoint using a port being identified by a unique
endpoint ID. Endpoint addresses are specified in the form:

IP_Address:Port_Number:Endpoint_ID

When a connection to a port is first initialized, an XML message is sent
to identify which endpoint this connection represents. The initialization mes-
sage takes the form:

<?xml version="1.0" encoding="UTF-8"?>

<TCPInitMessage>

<endpointID>endpoint id</endpointID>

</TCPInitMessage>

All messages sent using the TCP protocol, including the initialization
message, are preceded by an integer (4bytes) that indicate the length of the
message (in bytes).

7.3.6 Configuration

In the reference Java implementation, when a peer is first instantiated there
are three configuration options: use the default configuration; use the con-
figuration window; or specify a custom configuration. We discuss these three
options in the next sections.

Default Configuration

The default peer configuration is the following:

• The peer is not enabled as rendezvous.

• TCP standard input and output pipes are enabled

• UDP discovery pipes are enabled (port 2221)

• The port range is 2223 to 2333

80 CHAPTER 7. P2PS (PEER-TO-PEER SIMPLIFIED)

Figure 7.3: The pipe configuration tab.

Configuration Window

An alternative to using the default configuration is to allow the user to con-
figure the peer at instantiation time using the configuration window. The
configuration window is split into two tabs, the pipe tab and the discovery
tab. The pipe tab (Figure 7.3) allows the user to choose from the following
options:

Enable TCP Input Pipes - (default = enabled)

Enable TCP Output Pipes - (default = enabled)

Enable UDP Input Pipes - (default = disabled)

Enable UDP Output Pipes - (default = disabled)

Port Range - This specifies the port numbers that will be assigned to end-
points. This option is useful if a firewall is operating and only specific
port numbers are open. (default = 2223 to 2333)

Although it may seem odd that a user can enable/disable input and out-
put pipes separately, it may be the case that the user wants to create input
pipes of only one type but wishes to be able to connect to pipes of multiple
types.

7.3. P2PS IMPLEMENTATION 81

Figure 7.4: The discovery configuration tab.

The discovery tab (Figure 7.4) allows the user to choose from the following
options:

Enable UDP Multicast Discovery - This option enables discovery using
UDP multicast endpoints (see Section 7.3.5). (default = enabled)

Enable as Rendezvous Peer - This option enables the peer as a ren-
dezvous peer (see Section 7.2.4). (default = disabled)

Local Rendezvous Ports - If the peer is enabled as a rendezvous then this
specifies the ports to which other rendezvous peers forward queries.

Rendezvous Addresses - If the peer is enabled as a rendezvous then this
specifies the addresses to which this peer forwards queries.

Custom Configuration

A third option other than using the default configuration or the configuration
window is to specify a custom configuration. To use a custom configuration
the reference peer is instantiated using an instance on the p2ps.peer.Config
interface. The methods contained in the Config interface are:

isRendevousPeer() - Returns true if the peer is a rendezvous.

82 CHAPTER 7. P2PS (PEER-TO-PEER SIMPLIFIED)

getLocalRendezvousEndpoints() - Returns an array of the local ren-
dezvous endpoints which other rendezvous peers forward queries to.

getRemoteRendezvousEndpoints() - Returns an array of the remote
rendezvous endpoints to which this peer forwards queries.

getResolverConfigs() - Returns an array of resolver configurations.
Resolver configurations specify the resolver class name (e.g.
p2ps.imp.endpoint.UDP.UDPResolver) and the pipe types that are en-
abled for that resolver.

getMinPort() - Returns the minimum port in the port range.

getMaxPort() - Returns the maximum port in the port range.

It is obviously up the user how the instance of p2ps.peer.Config is con-
structed but one possibility is write a custom configuration window and an-
other to use some form of properties file.

7.4 Conclusion

In this paper we have outlined P2PS (Peer-to-Peer Simplified), a lightweight
peer-to-peer infrastructure based on XML discovery and communication.
The P2PS architecture is inspired by that of Suns JXTA project; however
P2PS focuses only on the core elements required for peer discovery and pipe-
based communication.

In Section 7.2 we described the P2PS architecture, the standard P2PS
advertisement/query types and the mechanisms for publishing and handling
these advertisements/queries. We also described the P2PS notion of discov-
ery subnets and rendezvous peers for connecting discovery subnets. In Sec-
tion 7.3 we looked at the architecture of the Java reference implementation
of P2PS and the interfaces it contains. However, we noted that this is only
one implementation of the P2PS infrastructure and other implementations
are free to employ different architectures.

More information on P2PS and downloads of the Java reference imple-
mentation can be obtained from:

http://www.trianacode.org

7.5. CLIENT/SERVER EXAMPLE 83

7.5 Client/Server Example

In this section we give an example client/server application built using the
Java reference P2PS implementation. In this very simple example the server
advertises a pipe called serverPipe, and the client discovers this pipe and
sends a simple test message along it to the server.

The Java code for the example server is:

public class PeerServer implements MessageListener {

private AdvertisementFactory adverts;
private DiscoveryService discovery;
private PipeService pipes;

public PeerServer() throws IOException {
// initialize peer
Peer peer = new PeerImp(true);
peer.init();

// retrieve services
adverts = peer.getAdvertisementFactory();
discovery = peer.getDiscoveryService();
pipes = peer.getPipeService();

System.out.println("Server Started");

// initialise server pipe advertisement
PipeAdvertisement pipead = (PipeAdvertisement)

adverts.newAdvertisement(PipeAdvertisement.PIPE_ADVERTISEMENT_TYPE);
pipead.setPipeName("serverPipe");

// create server pipe and attach listener
InputPipe inpipe = pipes.createInputPipe(pipead);
inpipe.addPipeListener(this);

// publish server pipe advertisement
discovery.publish(pipead);

}

public void messageReceived(MessageReceivedEvent event) {
// display received messages
System.out.println("\nMessage: " + new String(event.getMessage()));

84 CHAPTER 7. P2PS (PEER-TO-PEER SIMPLIFIED)

System.out.println("(Received on " +
event.getInputPipe().getPipeName() + " " +
event.getInputPipe().getPipeID() + ")");

}

public static void main(String[] args) throws IOException {
new PeerServer();

}

}

The Java code for the example client is:

public class PeerClient implements DiscoveryListener, MessageListener {

private AdvertisementFactory adverts;
private DiscoveryService discovery;
private PipeService pipes;

public PeerClient() throws IOException {
// initialize peer
Peer peer = new PeerImp(true);
peer.init();

// retrieve services
adverts = peer.getAdvertisementFactory();
discovery = peer.getDiscoveryService();
pipes = peer.getPipeService();

// listen for discovered advertisements
discovery.addDiscoveryListener(this);

System.out.println("Client Started: Locating Server Pipe");

// create pipe query for server pipe
PipeQuery pipequery = (PipeQuery)

adverts.newAdvertisement(PipeQuery.PIPE_QUERY_TYPE);
pipequery.setQueryPipeName("serverPipe");

// publish pipe query
discovery.publish(pipequery);

}

public void advertDiscovered(DiscoveryEvent event) {

7.5. CLIENT/SERVER EXAMPLE 85

try {
Advertisement advert = event.getAdvertisement();

// handle discovered pipe advertisement
if (advert instanceof PipeAdvertisement) {

System.out.println("\nPipe discovered: " +
((PipeAdvertisement) advert).getPipeName() + " " +
((PipeAdvertisement) advert).getPipeID());

// connect output pipe to discovered pipe
OutputPipe outpipe =

pipes.connectOutputPipe((PipeAdvertisement) advert);

// send test message
outpipe.send("HELLO".getBytes());

System.out.println("Message Sent: HELLO");
}

}
catch(IOException except) {

except.printStackTrace();
}

}

public void messageReceived(MessageReceivedEvent event) {
System.out.println(" Message Received on " +

event.getInputPipe().getPipeName() + " " +
event.getInputPipe().getPipeID());

}

public static void main(String[] args) throws IOException {
new PeerClient();

}
}

86 CHAPTER 7. P2PS (PEER-TO-PEER SIMPLIFIED)

7.6 Advertisements

In this section we give the XML for the standard advertisement types described in
Section 7.2.1. The tags shown here are in addition to the <advertId¿ and <peerId>
tags which are included in every advertisement (see Section 7.2.1).

Pipe Advertisement

<?xml version="1.0" encoding="UTF-8"?>
<PipeAdvertisement>

<pipeId>the pipe id</pipeId>
<pipeName>the pipe name</pipeName>
<pipeType>the pipe type (e.g. standard,

bidirectional, discovery)</pipeType>
</PipeAdvertisement>

Service Advertisement

<?xml version="1.0" encoding="UTF-8"?>
<ServiceAdvertisement>

<serviceId>the service id</serviceId>
<serviceName>the service name</serviceName>
<controlPipes>

<PipeAdvertisement>
advert for a control pipe

</PipeAdvertisement>
... optional additional control adverts

</controlPipes>
</ServiceAdvertisement>

Endpoint Advertisement

<?xml version="1.0" encoding="UTF-8"?>
<EndpointAdvertisement>

<endpointAddress>
<address>the endpoint address</address>
<type>the endpoint type (e.g. UNICAST, MULTICAST)</type>
<protocol>the endpoint protocol expected</protocol>

</endpointAddress>
<endpointProtocol>the endpoint protocol expected</endpointProtocol>
<pipeId>the pipe id this endpoint act for</pipeId>
... optional additional endpoint protocols/pipe ids

</EndpointAdvertisement>

7.7. QUERIES 87

Endpoint Resolver Advertisement

<?xml version="1.0" encoding="UTF-8"?>
<EndpointResolverAdvertisement>

<endpointAddress>
<address>the endpoint address for the resolver</address>
<type>the endpoint type (e.g. UNICAST, MULTICAST)</type>
<protocol>the endpoint protocol expected</protocol>

</endpointAddress>
<resolverForPeerID>the peer endpoints are resolved for</resolverForPeerID>
<resolverPipeType>the pipe type the resolver handles</resolverPipeType>
<transportProtocol>the transport protocol the resolver handles</transportProtocol>
... optional additional peer ids/pipe types/transport protocols

</EndpointResolverAdvertisement>

Rendezvous Advertisement

<?xml version="1.0" encoding="UTF-8"?>
<RendezvousAdvertisement>

<rendezvousAddress>
<endpointAddress>

<address>the rendezvous endpoint address</address>
<type>the endpoint type (e.g. UNICAST, MULTICAST)</type>
<protocol>the endpoint protocol expected</protocol>

</endpointAddress>
... optional additional rendezvous endpoint addresses

</rendezvousAddress>
</RendezvousAdvertisement>

7.7 Queries

In this section we give the XML for the standard query types described in Sec-
tion 7.2.2. As noted previously, queries are specialized advertisements, and the
tags given here are in addition to the <advertId¿ and <peerId> tags which are
included in every advertisement (see Section 7.2.1).

Pipe Query

<?xml version="1.0" encoding="UTF-8"?>
<PipeQuery>

<query>PipeAdvertisement</query>
<queryPipeId>optional pipe id to match</queryPipeId>
<queryPipeName>optional pipe name to match</queryPipeName>

88 CHAPTER 7. P2PS (PEER-TO-PEER SIMPLIFIED)

<queryPipeType>optional pipe type to match</queryPipeType>
... optional additional query tags

</PipeQuery>

Service Query

<?xml version="1.0" encoding="UTF-8"?>
<ServiceQuery>

<query>ServiceAdvertisment</query>
<queryServiceId>the service id to match</queryServiceId>
<queryServiceName>the service name to match</queryServiceName>
... optional additional query tags

</ServiceQuery>

Endpoint Query

<?xml version="1.0" encoding="UTF-8"?>
<EndpointQuery>

<query>EndpointAdverisement</query>
<queryEndpointProtocol>the endpoint protocol to match</queryEndpointProtocol>
<queryPipeId>the pipe id to match </queryPipeId>
... optional additional query tags

</EndpointQuery>

Endpoint Resolver Query

<?xml version="1.0" encoding="UTF-8"?>
<EndpointResolverQuery>

<query>EndpointResolverAdverisement</query>
<queryResolverForPeerID>the peer id to match </queryResolverForPeerID>
<queryResolverPipeType>the pipe type to match </queryResolverPipeType>
<queryTransportProtocol>the transport protocol to match </queryTransportProtocol>
... optional additional query tags

</EndpointResolverQuery>

Chapter 8

Using P2PS within Java Agents

In Chapt. 5, an overview of how Java objects could be attached to Ns2 nodes was
given. In the previous Chapter, an overview of the P2PS middleware was given.
In this chapter, we show how P2PS can be used from within a Java object that
has been attached to an NS2 node for providing higher level P2P discovery and
communication services within NS2, through the Java PAI integration outlined in
Chapt. 6.

8.1 P2PS Interface to PAI

The P2PS communication layer to the low level sockets and Java Internet packages
has been replaced using JNI to invoke the PAI (and hence Protolib) protocols,
thereby using the Protolib UDP implementations rather than the native Java ones.
An overview of this integration is given in Fig. 6.1.

The customised P2PS version uses the PAI JNI interface in order to interface
with Protolib sockets. It also reimplements the Java socket classes in order to
provide a unified interface to the underlying sockets. For this implementation, I
re-implemented all of the methods in the Java DatagramPacket, DatagramSocket,
InetAddress and MulticastSocket java.net classes. I simply reimplemented the
method calls but put the resulting code within my own pai.net package.

Therefore, from a Java programmers perspective, in order to interface with
PAI, Protolib and therefore NS2, s/he only has to do a find and replace on all
occurrences of the string java.net and replace them with pai.net and their code
will use the Java-PAI version of the socket implementations. Therefore, this in-
frastructure makes it extremely easy to integrate other middleware systems within
this framework. P2PS is an example of showing how things can work but other
Java middleware could be easily plugged in at a later stage.

89

90 CHAPTER 8. USING P2PS WITHIN JAVA AGENTS

JNI
Bridge

Protolib

JVM
P2PS

JPAI

PAI

Send Ref_ Ref_

Locate Agent
Using Ref_

NS2 Agent

Protolib
PAI

NS2 Agent

Protolib
PAI

NS2 Agent

NS2 Comms

Figure 8.1: An overview of how P2PS is hooked into each node using JNI

8.2 Discovering NS2 Nodes Using P2PS

8.2.1 The TCL Side

The following is the TCL script part of the implementation: which creates two
JavaAgent NS2 nodes attaches the two Java object to themsand uses the P2PS
discovery mechanisms to discover each other and to send a message between the
nodes:

Create multicast enabled simulator instance
set ns_ [new Simulator -multicast on]
$ns_ multicast

Create two nodes
set n1 [$ns_ node]
set n2 [$ns_ node]

Put a link between them
$ns_ duplex-link $n1 $n2 64kb 100ms DropTail
$ns_ queue-limit $n1 $n2 100
$ns_ duplex-link-op $n1 $n2 queuePos 0.5
$ns_ duplex-link-op $n1 $n2 orient right

Configure multicast routing for topology
set mproto DM

8.2. DISCOVERING NS2 NODES USING P2PS 91

set mrthandle [$ns_ mrtproto $mproto {}]
if {$mrthandle != ""} {

$mrthandle set_c_rp [list $n1]
}

5) Allocate a multicast address to use
set group [Node allocaddr]

puts "Creating Java Broker Agents and attach them to the NS2 nodes ..."

set p1 [new Agent/JavaAgent]
$ns_ attach-agent $n1 $p1

set p2 [new Agent/JavaAgent]
$ns_ attach-agent $n2 $p2

puts "CREATED OK"

Initialize C++ agents

puts "In script: Initializing ..."

$ns_ at 0.0 "$p1 initAgent"
$ns_ at 0.0 "$p2 initAgent"

#set up the Java classes

$ns_ at 0.0 "$p1 setClass
/Users/scmijt/Apps/nrl/p2ps-ns2/classes pai.examples.ns2.P2PSServer"
$ns_ at 0.0 "$p2 setClass
/Users/scmijt/Apps/nrl/p2ps-ns2/classes pai.examples.ns2.P2PSClient"

puts "Starting simulation ..."

$ns_ at 0.0 "$p1 javaCommand setGroupAddress $group"

Must set Group address BEFORE initializing

$ns_ at 0.0 "$p1 javaCommand init"
$ns_ at 0.0 "$p2 javaCommand init"

The timer is started within C++ code NOT Java but the
parameters are specified here

$ns_ at 1.0 "$p1 javaCommand advertise"
$ns_ at 1.0 "$p2 javaCommand query"

$ns_ at 10.0 "$p1 cleanUp"
$ns_ at 10.0 "$p2 cleanUp"

92 CHAPTER 8. USING P2PS WITHIN JAVA AGENTS

$ns_ at 10.0 "finish $ns_"

proc finish {ns_} {
$ns_ halt
delete $ns_
}
$ns_ run

In this example, we are using two different types of Java nodes, a server
and a client. The client uses the P2PS discovery mechanisms to discover the
server and then sends it a simple message using the address and port that it
has discovered.

Therefore, two different Java classes are located and instantiated, and
attached to the two nodes created. We then use the javaCommand init in-
struction to initialize the Java nodes and use then different commands for
each node in order to specify its behaviour. The server uses the javaCom-
mand advertise instruction to advertise itself on the network, whilst the client
uses the javaCommand query command in order to publish its query on the
network to discover any SRSS nodes available for communication.

8.2.2 The Java Side: The Server

On the java side there are two different Java object being used, a client and a
server. This section describes the role of the server, P2PSServer.java, which
uses P2PS to advertise itself on the network and provide a serving capability
via PAI to allow other nodes to communicate with it. The source is listed
below:

package pai.examples.ns2;

import p2ps.discovery.AdvertisementFactory;
import p2ps.discovery.DiscoveryService;
import p2ps.imp.peer.PeerImp;
import p2ps.peer.Peer;
import p2ps.impl.peer.config.DefaultPAIConfig;
import p2ps.impl.srss.SRSSAdvert;

import java.io.IOException;
import java.net.SocketException;

import pai.broker.CommandInterface;
import pai.broker.PAIAccessInterface;
import pai.api.PAIInterface;

8.2. DISCOVERING NS2 NODES USING P2PS 93

import pai.impl.Logging;
import pai.event.PAISocketListener;
import pai.event.PAISocketEvent;
import pai.net.DatagramPacket;
import pai.net.DatagramSocket;

public class P2PSServer implements CommandInterface,
PAIAccessInterface, PAISocketListener {

private AdvertisementFactory adverts;
private DiscoveryService discovery;
PAIInterface pai;
Peer peer;
DatagramSocket s;
int port = 3333;

public P2PSServer() {
}

public void init() {
Logging.setEnabled(false);

try {
peer = new PeerImp(new DefaultPAIConfig());

} catch (IOException ee) {
System.out.println("Couldn’t create peer");

}

try {
peer.init();

} catch (IOException ee) {
System.out.println("Couldn’t create peer");
ee.printStackTrace();

}

try {
s = pai.addSocket(port);
pai.addPAISocketListener(s, this);

} catch (SocketException e) {
System.out.println("Error opening socket");

} catch (IOException ep) {
System.out.println("Error opening socket");

}
}

public void advertise() {
discovery = peer.getDiscoveryService();
try {

SRSSAdvert srssadd = new SRSSAdvert("Mobile Node",

94 CHAPTER 8. USING P2PS WITHIN JAVA AGENTS

pai.getLocalHost().getHostAddress(), port);

discovery.publish(srssadd);
} catch (IOException ee) {

System.out.println("Couldn’t create peer");
ee.printStackTrace();

}
}

public void dataReceived(PAISocketEvent sv) {
try {

System.out.println("Receiving ----------------------------");
byte b[] = new byte[1000];
DatagramPacket p = new DatagramPacket(b, b.length);
pai.receive(s, p);

System.out.println("P2PSServer: Received " +
new String(p.getData()) +

" from " + p.getAddress().getHostAddress() +
" port: " + p.getPort());

} catch (IOException ep) {
System.out.println("PAICommands: Error opening socket");

}
}

public String command(String command, String args[]) {
if (command.equals("init")) {

init();
return "OK";

}
if (command.equals("advertise")) {

advertise();
return "OK";

} else if (command.equals("cleanUp")) {
pai.cleanUp();
return "OK";

}

return "ERROR";
}

/**
* Sets the reference to PAI for the direct communication.
*/
public void setPAI(PAIInterface pai) {

this.pai = pai;
}

}

8.2. DISCOVERING NS2 NODES USING P2PS 95

The init() function first enables the Logging to the on position, meaning
that detailed comments are output from the supporting Java classes - this is
useful for understanding the types of communications which are involved in
this example. Although, we are simply advertising ourselves to be discovered
by a client, the actual process by which this occurs is pretty complex and
involves sending several XML messages between the nodes in order to resolve
capabilities etc.

Next, this peer is initialized using a default initialization, which is imple-
mented within the DefaultPAIConfig() class, whose implementation is pro-
vided below:

package p2ps.impl.peer.config;

import p2ps.endpoint.EndpointAddress;
import p2ps.peer.Config;
import p2ps.peer.ResolverConfig;
import p2ps.pipe.PipeTypes;
import p2ps.imp.peer.config.ResolverConfigImp;

import java.io.IOException;

public class DefaultPAIConfig implements Config {

/**
* @return true if the peer is a rendezvous peer
*/
public boolean isRendezvousPeer() {

return false;
}

/**
* @return an array of the local rendezvous endpoints
*/
public EndpointAddress[] getLocalRendezvousEndpoints() {

return new EndpointAddress[0];
}

/**
* @return an array of the remote rendezvous endpoints that the rendezvous
* service should connect to.
*/
public EndpointAddress[] getRemoteRendezvousEndpoints() {

return new EndpointAddress[0];
}

/**
* @return a configuration using a UDP resolver for input, output and

96 CHAPTER 8. USING P2PS WITHIN JAVA AGENTS

* discovery pipes
*/
public ResolverConfig[] getResolverConfigs() {

ResolverConfigImp udpconfig =
new ResolverConfigImp("p2ps.endpoint.NativeUDP.UDPResolver"

, false, false);

ResolverConfigImp tcpconfig =
new ResolverConfigImp("p2ps.endpoint.NativeUDP.UDPResolver"

, false, false);

udpconfig.setInputPipesEnabled(PipeTypes.DISCOVERY, true);
udpconfig.setOutputPipesEnabled(PipeTypes.DISCOVERY, true);

udpconfig.setInputPipesEnabled(PipeTypes.STANDARD, true);
udpconfig.setOutputPipesEnabled(PipeTypes.STANDARD, true);

return new ResolverConfig[] {udpconfig};
}

/**
* @return the minimum available port number
*/
public int getMinPort() {

return DEFAULT_MIN_PORT;
}

/**
* Read a saved configuration from a file
*/
public void readConfig() throws IOException {

//no-op no point in saving a default
}

/**
* Write a configuration to a file
*/
public void writeConfig() throws IOException {

//no-op no point in saving a default
}

/**
* @return the maximum available port number
*/
public int getMaxPort() {

return DEFAULT_MAX_PORT;
}

}

8.2. DISCOVERING NS2 NODES USING P2PS 97

The most important method for SRSS application here, are the setting
of the rendezvous flag and the setting of the PAI implementation of the USP
Endpoint protocol. One could easily duplicate this class or provide a set
method in order to manually set a node to act as a rendezvous node.

Notice here we add new resolvers for our endpoints by setting the new
P2PS implementation of the UDP endpoint protocol to override the default
Java implementation (i.e. p2ps.endpoint.NativeUDP.UDPResolver). In this
configuration, we disable all other endpoint implementations (i.e. Java UDP
and TCP) so that we only use our new UDP implementation that uses PAI
and the underlying Protolib implementation for passing data between NS2
nodes.

We then initialize the P2PS peer, which sets up the communication sock-
ets for discovery etc and starts the various services that are enabled on this
peer.

Finally, we then open a UDP socket using PAI directly, so that our client
can communicate with this node once it has discovered its address and port
number, which it wishes to use for communication.

The advertise method then gets a reference to the discovery service ready
to publish the advert, advertising this node’s capability on the network. The
actual advert used in this example uses a customised advert for SRSS nodes,
which has been implemented in a class called SRSSAdvert:

SRSSAdvert srssadd = new SRSSAdvert("Mobile Node",
pai.getLocalHost().getHostAddress(), port);

An SRSSAdvert creates an XML document, which makes the identifier
(i.e. a string), the address and port number of this node available via the
discovery service on the network. The SRSSAdvert could be easily extended
to add other information which you may want to publish, say for example, to
publish node which have different roles within the network. The SRSSAdvert
class is given below:

package p2ps.impl.srss;

import org.jdom.Element;
import java.io.IOException;
import p2ps.discovery.Advertisement;

/**
* A basic implementation of an SRSS advert, sued to publish
* an SRSS node and its capabilities on a network.
*/
public class SRSSAdvert implements Advertisement {

98 CHAPTER 8. USING P2PS WITHIN JAVA AGENTS

public static String SRSS_ADVERT="SRSS_Mobile_Node";
public static String SRSS_PORT_TYPE ="STANDARD_UDP_PORT";

private String advertid;
private String peerid;
private int port;

/**
* Creates an SRSS Advert within an advert ID (i.e. type of SRSS advert),
* a peer ID i.e. its NS2 address and a port on whichi it communicates.
*
* @param advertid
* @param peerID
* @param port
*/
public SRSSAdvert(String advertid, String peerID, int port) {

this.advertid = advertid;
this.peerid = peerID;
this.port = port;

}

public SRSSAdvert(Element root) {
Element elem = root.getChild(ADVERT_ID_TAG);
if (elem != null)

advertid = elem.getText();

elem = root.getChild(PEER_ID_TAG);
if (elem != null)

peerid = elem.getText();

elem = root.getChild(SRSS_PORT_TYPE);
if (elem != null)

port = Integer.valueOf(elem.getText()).intValue();
}

/**
* Output the advert as an xml document
*/
public Element getXMLElement() throws IOException {

Element root = new Element(SRSS_ADVERT);

Element elem = new Element(ADVERT_ID_TAG);
elem.addContent(advertid);
root.addContent(elem);

elem = new Element(PEER_ID_TAG);
elem.addContent(peerid);
root.addContent(elem);

8.2. DISCOVERING NS2 NODES USING P2PS 99

elem = new Element(SRSS_PORT_TYPE);
elem.addContent(String.valueOf(port));
root.addContent(elem);

return root;
}
/**
* @return the type for this advertisement
*/
public String getType() {

return SRSS_ADVERT;
}

/**
* @return the unique id for this advertisement
*/
public String getAdvertID() {

return advertid;
}

/**
* @return the id (i.e. NS2 network address)
* of the peer that created this advertisement
*/
public String getPeerID() {

return peerid;
}

/**
* @return the id of the port
*/
public String getPortID() {

return SRSS_PORT_TYPE;
}

/**
* @return the name of the port
*/
public int getPort() {

return port;
}

}

The SRSSAdvert basically provides a minimal implementation of an SRSS
advert, which allows the inclusion of a simple descriptive string and the ad-
dress and port number of the NS2 node that it can be communicated with.
The bulk of this implementation is to allow the serialization and deserial-

100 CHAPTER 8. USING P2PS WITHIN JAVA AGENTS

ization of this information to and from an XML format. The XML format
creates a common text-based format for exchanging message between P2PS
processors, thereby enabling a language-independent format for communica-
tion. This, in turn, can enable P2PS nodes to be implemented in different
programming languages e.g. a Java P2PS node could easily talk to a C++
one. The serialization and deserialization is achieved using the jdom pack-
ages, which is the only Jar file needed for the P2PS implementation.

Once, this advert is created, it is published using the discovery service’s
publish method, as illustrated in the program listing above.

The dataReceived is then called every time data is sent to this server node
by using the PAISocketListener interface mechanism, described in previous
chapters. This method simply reads the data packet and prints it to the
screen.

8.2.3 The Java Side: The Client

The P2PSClient.java implementation finds the server and sends it a message.
The code listing is as follows:

package pai.examples.ns2;

import p2ps.discovery.Advertisement;
import p2ps.discovery.AdvertisementFactory;
import p2ps.discovery.DiscoveryEvent;
import p2ps.discovery.DiscoveryListener;
import p2ps.discovery.DiscoveryService;
import p2ps.imp.peer.PeerImp;
import p2ps.peer.Peer;
import p2ps.impl.peer.config.DefaultPAIConfig;
import p2ps.impl.srss.SRSSQuery;
import p2ps.impl.srss.SRSSAdvert;

import java.io.IOException;
import java.net.SocketException;

import pai.broker.CommandInterface;
import pai.broker.PAIAccessInterface;
import pai.api.PAIInterface;
import pai.net.DatagramPacket;
import pai.net.InetAddress;
import pai.net.DatagramSocket;

public class P2PSClient implements CommandInterface, PAIAccessInterface,
DiscoveryListener {

private AdvertisementFactory adverts;

8.2. DISCOVERING NS2 NODES USING P2PS 101

private DiscoveryService discovery;
PAIInterface pai;
DatagramSocket s;
int portToSendTo = -1;
String addressToSendTo = null;

public P2PSClient() {
}

public void init() throws IOException {
Peer peer = new PeerImp(new DefaultPAIConfig());
peer.init();

discovery = peer.getDiscoveryService();
discovery.addDiscoveryListener(this);

try {
s = pai.addSocket(3333); // for sending to

} catch (SocketException e) {
System.out.println("Error opening socket");

} catch (IOException ep) {
System.out.println("Error opening socket");

}

}

public void query() throws IOException {
SRSSQuery query = new SRSSQuery("Mobile Node");
discovery.publish(query);

}

public void advertDiscovered(DiscoveryEvent event) {
Advertisement advert = event.getAdvertisement();

if (advert instanceof SRSSAdvert) {
System.out.println("P2PSClient: ------------------> Advert discovered: "

+ advert.getPeerID() + " " + ((SRSSAdvert) advert).getPort());
// set sending address
portToSendTo = ((SRSSAdvert) advert).getPort();
addressToSendTo = advert.getPeerID();
sendData(); // send it a hello message !

}
}

public void sendData() {
try {

byte b[] = (new String("Hello Proteus").getBytes());
DatagramPacket p = new DatagramPacket(b, b.length,

new InetAddress(addressToSendTo), portToSendTo);

102 CHAPTER 8. USING P2PS WITHIN JAVA AGENTS

pai.send(s, p);
} catch (IOException eh) {

System.out.println("Error Sending Data");
}

}

public String command(String command, String args[]) {
if (command.equals("init")) {

try {
init();

} catch (IOException ee) {
System.out.println("Could not instantiate peer");
ee.printStackTrace();

}
return "OK";

}
if (command.equals("query")) {

try {
query();

} catch (IOException ee) {
System.out.println("Could not instantiate peer");
ee.printStackTrace();

}
return "OK";

} else if (command.equals("cleanUp")) {
pai.cleanUp();
return "OK";

}

return "ERROR";
}

/**
* Sets the reference to PAI for the direct communication.
*/
public void setPAI(PAIInterface pai) {

this.pai = pai;
}

}

The init() function loads the default configuration for a P2PS peer and
initializes the peer’s services. It then obtains a reference to the discovery
service and adds itself as a discovery listener using the addDiscoveryListener
method on the discovery service. This informs the discovery service that
this object wishes to be notified every time an advert is discovered on the
network. When an advert has been discovered the discovery service notifies
this object by invoking the advertDiscovered(DiscoveryEvent event) method
and passing it an event containing the advert.

8.2. DISCOVERING NS2 NODES USING P2PS 103

The init() method then uses the reference to PAI in order to create a UDP
socket on port 3333 for sending a message to the server, once its location has
been discovered.

The query method then issues an SRSS query in order to discover any
adverts that match the specified criteria:

SRSSQuery query = new SRSSQuery("Mobile Node");

The criteria are specified within the SRSSQuery class, which is an im-
plementation of the query counterpart for the SRSS advert class. This class
basically, implements a matching function that can be used to match com-
patible adverts when a query is issued. The class is implemented as follows:

package p2ps.impl.srss;

import org.jdom.Element;
import java.io.IOException;
import p2ps.pipe.PipeAdvertisement;
import p2ps.endpoint.EndpointAddress;
import p2ps.discovery.Query;

/**
* An implementation an SRSS Query, which is a query that
* is used to search for valid SRSSAdverts.
*/
public class SRSSQuery implements Query {

private String advertid;
private String peerid;
private String querypeerid;

public SRSSQuery(String advertid) {
this.advertid = advertid;

}

public SRSSQuery(Element root) throws IOException {
Element elem = root.getChild(ADVERT_ID_TAG);
if (elem != null)

advertid = elem.getText();

elem = root.getChild(PEER_ID_TAG);
if (elem != null)

peerid = elem.getText();

}

/**
* @return the type for this advertisement

104 CHAPTER 8. USING P2PS WITHIN JAVA AGENTS

*/
public String getType() {

return SRSSAdvert.SRSS_ADVERT;
}

/**
* @return the unique id for this advertisement
*/
public String getAdvertID() {

return advertid;
}

/**
* @return the id of the peer that created this advertisement
*/
public String getPeerID() {

return peerid;
}

/**
* @return the id of the peer this query is interested in (null if any)
*/
public String getQueryPeerID() {

return querypeerid;
}

/**
* Sets the id of the peer this query is interested in (null if any)
*/
public void setQueryPeerID(String id) {

querypeerid = id;
}

/**
* @return optional pipe for the query reply.
*/
public PipeAdvertisement getReplyPipeAdvertisement() {

return null;
}

/**
* Ssets the optional endpoint address for the query reply.
*/
public void setReplyPipeAdvertisement(PipeAdvertisement pipead) {
}

/**
* @return optional endpoint address for the query reply. If not specified
* the query matches should be (re)published.

8.2. DISCOVERING NS2 NODES USING P2PS 105

*/
public EndpointAddress getReplyEndpointAddress() {

return null;
}

/**
* Ssets the optional endpoint address for the query reply. If not specified
* the query matches should be (re)published.
*/
public void setReplyEndpointAddress(EndpointAddress replyaddr) {
}

/**
* @return true if the specified advert matches the query
*/
public boolean isMatch(p2ps.discovery.Advertisement advert) {

if (!(advert instanceof SRSSAdvert))
return false;

if (((querypeerid != null)) && (!querypeerid.equals(advert.getPeerID())))
return false;

return true;
}

/**
* Output the advert as an xml document
*/
public Element getXMLElement() throws IOException {

Element root = new Element(SRSSAdvert.SRSS_ADVERT);

Element elem = new Element(QUERY_TAG);
elem.addContent(String.valueOf(true));
root.addContent(elem);

elem = new Element(ADVERT_ID_TAG);
elem.addContent(advertid);
root.addContent(elem);

elem = new Element(PEER_ID_TAG);
elem.addContent(peerid);
root.addContent(elem);

return root;
}

}

The key method in the SRSSQuery class is the isMatch method, which is
used to match any adverts with this query. In this implementation, I simply

106 CHAPTER 8. USING P2PS WITHIN JAVA AGENTS

check whether the advert is an SRSSAdvert and that the peer that issued
the advert is not the same as the one that issued the query, otherwise you
would be locating your own adverts, which is almost certainly undesirable.

When an advert is discovered, the actual instance of the advert is ob-
tained from the event. In the advertDiscovered method, we therefore simply
check that this advert is indeed an SRSSAdvert. If it is, we use the ac-
cess methods to obtain its address and port number, save these within the
client’s instance variables and invoke the sendData method, which uses PAI
and these discovered address and port numbers to send a message directly
to the discovered server.

The resulting output should look something like this (depending on
whether you have Logging enabled - here I have enabled it):

[Ian-Taylors-Computer:examples/pai/javaAgent] scmijt% ns P2PSDiscovery.tcl
Creating Java Broker Agents and attach them to the NS2 nodes ...
PAIEnvironment: CREATING NEW ENVIRONMENT
CREATED OK
In script: Initializing ...
Starting simulation ...
Classpath is -Djava.class.path=/Users/scmijt/Apps/nrl/p2ps-ns2/classes
JavaBroker.java: Classname: pai.examples.ns2.P2PSServer
JavaBroker.java: Object wants PAI access .. setting up now...
PAINative: Java library path =
.:/Library/Java/Extensions:/System/Library/Java/Extensions:/usr/lib/java
PAINative: constructor
PAIEnvironment: CREATING NEW ENVIRONMENT
JavaBroker.java: Classname: pai.examples.ns2.P2PSClient
JavaBroker.java: Object wants PAI access .. setting up now...
JavaBroker: Group Address set to -2147483648
PAINative: setNs2Node
P2PSServer: ------------------> Server initialising
PAINative: addPAISocketListener
P2PSServer: ------------------> Peer Created
PAINAtive: joingroup, address is -2147483648
PAINative: addPAISocketListener
PAINative: addPAISocketListener
PAINative: send, Host Address -2147483648
PAINative: send, Port 5555
PAINative: send, Data <?xml version="1.0" encoding="UTF-8"?>
<ServiceAdvertisement>

<advertId>127.0.0.1-1082546529171-932091874</advertId>
<peerId>127.0.0.1-1082546529051-721554874</peerId>
<serviceName>DiscoveryService</serviceName>
<serviceID>127.0.0.1-1082546529195-218544900</serviceID>
<controlPipe>

<PipeAdvertisement>
<advertId>127.0.0.1-1082546529164-555487317</advertId>

8.2. DISCOVERING NS2 NODES USING P2PS 107

<peerId>127.0.0.1-1082546529051-721554874</peerId>
<pipeID>127.0.0.1-1082546529164-317733729</pipeID>
<pipeName>DiscoveryService</pipeName>
<pipeType>standard</pipeType>

</PipeAdvertisement>
</controlPipe>

</ServiceAdvertisement>
PAINative: send, Data Length 702
PAINative: send, Host Address -2147483648
PAINative: send, Port 5555
PAINative: send, Data <?xml version="1.0" encoding="UTF-8"?>
<EndpointResolverAdvertisement>

<advertId>127.0.0.1-1082546529132-956257422</advertId>
<peerId>127.0.0.1-1082546529051-721554874</peerId>
<endpointAddress>

<address>0:2223</address>
<endpointType>unicast</endpointType>
<transportProtocol>UDP</transportProtocol>

</endpointAddress>
<resolverPipeTypes>standard</resolverPipeTypes>
<resolverPipeTypes>discovery</resolverPipeTypes>
<resolverForPeerID>127.0.0.1-1082546529051-721554874</resolverForPeerID>
<transportProtocol>UDP</transportProtocol>

</EndpointResolverAdvertisement>
PAINative: send, Data Length 634
PAINative: send, Host Address -2147483648
PAINative: send, Port 5555
PAINative: send, Data <?xml version="1.0" encoding="UTF-8"?>
<EndpointResolverQuery>

<query>true</query>
<advertId>127.0.0.1-1082546529308-453632564</advertId>
<peerId>127.0.0.1-1082546529051-721554874</peerId>
<queryPeerID>127.0.0.1-1082546529051-721554874</queryPeerID>
<replyEndpointAddress>

<endpointAddress>
<address>0:2223</address>
<endpointType>unicast</endpointType>
<transportProtocol>UDP</transportProtocol>

</endpointAddress>
</replyEndpointAddress>

</EndpointResolverQuery>
PAINative: send, Data Length 553
PAINative: addPAISocketListener
PAINative: send, Host Address 0
PAINative: send, Port 2223
PAINative: send, Data <?xml version="1.0" encoding="UTF-8"?>
<EndpointResolverAdvertisement>

<advertId>127.0.0.1-1082546529132-956257422</advertId>
<peerId>127.0.0.1-1082546529051-721554874</peerId>

108 CHAPTER 8. USING P2PS WITHIN JAVA AGENTS

<endpointAddress>
<address>0:2223</address>
<endpointType>unicast</endpointType>
<transportProtocol>UDP</transportProtocol>

</endpointAddress>
<resolverPipeTypes>standard</resolverPipeTypes>
<resolverPipeTypes>discovery</resolverPipeTypes>
<resolverForPeerID>127.0.0.1-1082546529051-721554874</resolverForPeerID>
<transportProtocol>UDP</transportProtocol>

</EndpointResolverAdvertisement>
PAINative: send, Data Length 634
PAINative: dataReceivedAtNativeSocket
PAINative: setNs2Node
PAINative: notifying Listeners
PAINative: setDatagramDetails
PAINative: setDatagramDetails: Port - -1 address is 0
PAINative: recv, Host Address 0
PAINative: recv, Port 2225
PAINative: recv, Data <?xml version="1.0" encoding="UTF-8"?>
<EndpointResolverAdvertisement>

<advertId>127.0.0.1-1082546529132-956257422</advertId>
<peerId>127.0.0.1-1082546529051-721554874</peerId>
<endpointAddress>

<address>0:2223</address>
<endpointType>unicast</endpointType>
<transportProtocol>UDP</transportProtocol>

</endpointAddress>
<resolverPipeTypes>standard</resolverPipeTypes>
<resolverPipeTypes>discovery</resolverPipeTypes>
<resolverForPeerID>127.0.0.1-1082546529051-721554874</resolverForPeerID>
<transportProtocol>UDP</transportProtocol>

</EndpointResolverAdvertisement>
PAINative: recv, Data Length 634
PAINative: setNs2Node
PAINative: removeSocket
PAINative: removePAISocketListener
PAINative: addSocket on port 3333
PAINative: addPAISocketListener
PAINative: setNs2Node
P2PSClient: ------------------> creating
PAINative: addPAISocketListener
P2PSClient: ------------------> Peer initialising
PAINAtive: joingroup, address is -2147483648
PAINative: addPAISocketListener
PAINative: addPAISocketListener
PAINative: send, Host Address -2147483648
PAINative: send, Port 5555
PAINative: send, Data <?xml version="1.0" encoding="UTF-8"?>
<ServiceAdvertisement>

8.2. DISCOVERING NS2 NODES USING P2PS 109

<advertId>127.0.0.1-1082546529556-853727765</advertId>
<peerId>127.0.0.1-1082546529534-355209911</peerId>
<serviceName>DiscoveryService</serviceName>
<serviceID>127.0.0.1-1082546529556-385878417</serviceID>
<controlPipe>

<PipeAdvertisement>
<advertId>127.0.0.1-1082546529551-522719787</advertId>
<peerId>127.0.0.1-1082546529534-355209911</peerId>
<pipeID>127.0.0.1-1082546529551-283564741</pipeID>
<pipeName>DiscoveryService</pipeName>
<pipeType>standard</pipeType>

</PipeAdvertisement>
</controlPipe>

</ServiceAdvertisement>
PAINative: send, Data Length 702
PAINative: send, Host Address -2147483648
PAINative: send, Port 5555
PAINative: send, Data <?xml version="1.0" encoding="UTF-8"?>
<EndpointResolverAdvertisement>

<advertId>127.0.0.1-1082546529540-214271659</advertId>
<peerId>127.0.0.1-1082546529534-355209911</peerId>
<endpointAddress>

<address>1:2223</address>
<endpointType>unicast</endpointType>
<transportProtocol>UDP</transportProtocol>

</endpointAddress>
<resolverPipeTypes>standard</resolverPipeTypes>
<resolverPipeTypes>discovery</resolverPipeTypes>
<resolverForPeerID>127.0.0.1-1082546529534-355209911</resolverForPeerID>
<transportProtocol>UDP</transportProtocol>

</EndpointResolverAdvertisement>
PAINative: send, Data Length 634
PAINative: send, Host Address -2147483648
PAINative: send, Port 5555
PAINative: send, Data <?xml version="1.0" encoding="UTF-8"?>
<EndpointResolverQuery>

<query>true</query>
<advertId>127.0.0.1-1082546529633-83243233</advertId>
<peerId>127.0.0.1-1082546529534-355209911</peerId>
<queryPeerID>127.0.0.1-1082546529534-355209911</queryPeerID>
<replyEndpointAddress>

<endpointAddress>
<address>1:2223</address>
<endpointType>unicast</endpointType>
<transportProtocol>UDP</transportProtocol>

</endpointAddress>
</replyEndpointAddress>

</EndpointResolverQuery>
PAINative: send, Data Length 552

110 CHAPTER 8. USING P2PS WITHIN JAVA AGENTS

PAINative: addPAISocketListener
PAINative: send, Host Address 1
PAINative: send, Port 2223
PAINative: send, Data <?xml version="1.0" encoding="UTF-8"?>
<EndpointResolverAdvertisement>

<advertId>127.0.0.1-1082546529540-214271659</advertId>
<peerId>127.0.0.1-1082546529534-355209911</peerId>
<endpointAddress>

<address>1:2223</address>
<endpointType>unicast</endpointType>
<transportProtocol>UDP</transportProtocol>

</endpointAddress>
<resolverPipeTypes>standard</resolverPipeTypes>
<resolverPipeTypes>discovery</resolverPipeTypes>
<resolverForPeerID>127.0.0.1-1082546529534-355209911</resolverForPeerID>
<transportProtocol>UDP</transportProtocol>

</EndpointResolverAdvertisement>
PAINative: send, Data Length 634
PAINative: dataReceivedAtNativeSocket
PAINative: setNs2Node
PAINative: notifying Listeners
PAINative: setDatagramDetails
PAINative: setDatagramDetails: Port - 2225 address is 1
PAINative: recv, Host Address 1
PAINative: recv, Port 2225
PAINative: recv, Data <?xml version="1.0" encoding="UTF-8"?>
<EndpointResolverAdvertisement>

<advertId>127.0.0.1-1082546529540-214271659</advertId>
<peerId>127.0.0.1-1082546529534-355209911</peerId>
<endpointAddress>

<address>1:2223</address>
<endpointType>unicast</endpointType>
<transportProtocol>UDP</transportProtocol>

</endpointAddress>
<resolverPipeTypes>standard</resolverPipeTypes>
<resolverPipeTypes>discovery</resolverPipeTypes>
<resolverForPeerID>127.0.0.1-1082546529534-355209911</resolverForPeerID>
<transportProtocol>UDP</transportProtocol>

</EndpointResolverAdvertisement>
PAINative: recv, Data Length 634
PAINative: setNs2Node
PAINative: removeSocket
PAINative: removePAISocketListener
PAINative: addSocket on port 3333
PAINative: dataReceivedAtNativeSocket
PAINative: setNs2Node
PAINative: notifying Listeners
PAINative: setDatagramDetails
PAINative: setDatagramDetails: Port - 2225 address is 0

8.2. DISCOVERING NS2 NODES USING P2PS 111

PAINative: recv, Host Address 0
PAINative: recv, Port 5555
PAINative: recv, Data <?xml version="1.0" encoding="UTF-8"?>
<ServiceAdvertisement>

<advertId>127.0.0.1-1082546529171-932091874</advertId>
<peerId>127.0.0.1-1082546529051-721554874</peerId>
<serviceName>DiscoveryService</serviceName>
<serviceID>127.0.0.1-1082546529195-218544900</serviceID>
<controlPipe>

<PipeAdvertisement>
<advertId>127.0.0.1-1082546529164-555487317</advertId>
<peerId>127.0.0.1-1082546529051-721554874</peerId>
<pipeID>127.0.0.1-1082546529164-317733729</pipeID>
<pipeName>DiscoveryService</pipeName>
<pipeType>standard</pipeType>

</PipeAdvertisement>
</controlPipe>

</ServiceAdvertisement>
PAINative: recv, Data Length 702
P2PSClient: Discovered a ServiceAdvertisement
P2PSClient: Advert class is a p2ps.imp.service.ServiceAdvertisementImp
PAINative: setNs2Node
PAINative: dataReceivedAtNativeSocket
PAINative: setNs2Node
PAINative: notifying Listeners
PAINative: setDatagramDetails
PAINative: setDatagramDetails: Port - 5555 address is 1
PAINative: recv, Host Address 1
PAINative: recv, Port 5555
PAINative: recv, Data <?xml version="1.0" encoding="UTF-8"?>
<ServiceAdvertisement>

<advertId>127.0.0.1-1082546529556-853727765</advertId>
<peerId>127.0.0.1-1082546529534-355209911</peerId>
<serviceName>DiscoveryService</serviceName>
<serviceID>127.0.0.1-1082546529556-385878417</serviceID>
<controlPipe>

<PipeAdvertisement>
<advertId>127.0.0.1-1082546529551-522719787</advertId>
<peerId>127.0.0.1-1082546529534-355209911</peerId>
<pipeID>127.0.0.1-1082546529551-283564741</pipeID>
<pipeName>DiscoveryService</pipeName>
<pipeType>standard</pipeType>

</PipeAdvertisement>
</controlPipe>

</ServiceAdvertisement>
PAINative: recv, Data Length 702
PAINative: setNs2Node
PAINative: dataReceivedAtNativeSocket
PAINative: setNs2Node

112 CHAPTER 8. USING P2PS WITHIN JAVA AGENTS

PAINative: notifying Listeners
PAINative: setDatagramDetails
PAINative: setDatagramDetails: Port - 5555 address is 0
PAINative: recv, Host Address 0
PAINative: recv, Port 5555
PAINative: recv, Data <?xml version="1.0" encoding="UTF-8"?>
<EndpointResolverAdvertisement>

<advertId>127.0.0.1-1082546529132-956257422</advertId>
<peerId>127.0.0.1-1082546529051-721554874</peerId>
<endpointAddress>

<address>0:2223</address>
<endpointType>unicast</endpointType>
<transportProtocol>UDP</transportProtocol>

</endpointAddress>
<resolverPipeTypes>standard</resolverPipeTypes>
<resolverPipeTypes>discovery</resolverPipeTypes>
<resolverForPeerID>127.0.0.1-1082546529051-721554874</resolverForPeerID>
<transportProtocol>UDP</transportProtocol>

</EndpointResolverAdvertisement>
PAINative: recv, Data Length 634
P2PSClient: Discovered a EndpointResolverAdvertisement
P2PSClient: Advert class is a p2ps.imp.endpoint.EndpointResolverAdvertisementImp
PAINative: setNs2Node
PAINative: dataReceivedAtNativeSocket
PAINative: setNs2Node
PAINative: notifying Listeners
PAINative: setDatagramDetails
PAINative: setDatagramDetails: Port - 5555 address is 1
PAINative: recv, Host Address 1
PAINative: recv, Port 5555
PAINative: recv, Data <?xml version="1.0" encoding="UTF-8"?>
<EndpointResolverAdvertisement>

<advertId>127.0.0.1-1082546529540-214271659</advertId>
<peerId>127.0.0.1-1082546529534-355209911</peerId>
<endpointAddress>

<address>1:2223</address>
<endpointType>unicast</endpointType>
<transportProtocol>UDP</transportProtocol>

</endpointAddress>
<resolverPipeTypes>standard</resolverPipeTypes>
<resolverPipeTypes>discovery</resolverPipeTypes>
<resolverForPeerID>127.0.0.1-1082546529534-355209911</resolverForPeerID>
<transportProtocol>UDP</transportProtocol>

</EndpointResolverAdvertisement>
PAINative: recv, Data Length 634
PAINative: setNs2Node
PAINative: dataReceivedAtNativeSocket
PAINative: setNs2Node
PAINative: notifying Listeners

8.2. DISCOVERING NS2 NODES USING P2PS 113

PAINative: setDatagramDetails
PAINative: setDatagramDetails: Port - 5555 address is 1
PAINative: recv, Host Address 1
PAINative: recv, Port 5555
PAINative: recv, Data <?xml version="1.0" encoding="UTF-8"?>
<EndpointResolverQuery>

<query>true</query>
<advertId>127.0.0.1-1082546529633-83243233</advertId>
<peerId>127.0.0.1-1082546529534-355209911</peerId>
<queryPeerID>127.0.0.1-1082546529534-355209911</queryPeerID>
<replyEndpointAddress>

<endpointAddress>
<address>1:2223</address>
<endpointType>unicast</endpointType>
<transportProtocol>UDP</transportProtocol>

</endpointAddress>
</replyEndpointAddress>

</EndpointResolverQuery>
PAINative: recv, Data Length 552
PAINative: addPAISocketListener
PAINative: removeSocket
PAINative: removePAISocketListener
PAINative: setNs2Node
PAINative: dataReceivedAtNativeSocket
PAINative: setNs2Node
PAINative: notifying Listeners
PAINative: setDatagramDetails
PAINative: setDatagramDetails: Port - 5555 address is 0
PAINative: recv, Host Address 0
PAINative: recv, Port 5555
PAINative: recv, Data <?xml version="1.0" encoding="UTF-8"?>
<EndpointResolverQuery>

<query>true</query>
<advertId>127.0.0.1-1082546529308-453632564</advertId>
<peerId>127.0.0.1-1082546529051-721554874</peerId>
<queryPeerID>127.0.0.1-1082546529051-721554874</queryPeerID>
<replyEndpointAddress>

<endpointAddress>
<address>0:2223</address>
<endpointType>unicast</endpointType>
<transportProtocol>UDP</transportProtocol>

</endpointAddress>
</replyEndpointAddress>

</EndpointResolverQuery>
PAINative: recv, Data Length 553
PAINative: addPAISocketListener
PAINative: removeSocket
PAINative: removePAISocketListener
P2PSClient: Discovered a EndpointResolverQuery

114 CHAPTER 8. USING P2PS WITHIN JAVA AGENTS

P2PSClient: Advert class is a p2ps.imp.endpoint.EndpointResolverQueryImp
PAINative: setNs2Node
PAINative: setNs2Node
P2PSServer: ------------------> Peer initialised
P2PSServer: ------------------> Server Started
PAINative: send, Host Address -2147483648
PAINative: send, Port 5555
PAINative: send, Data <?xml version="1.0" encoding="UTF-8"?>
<SRSS_Mobile_Node>

<advertId>Mobile Node</advertId>
<peerId>0</peerId>
<STANDARD_UDP_PORT>3333</STANDARD_UDP_PORT>

</SRSS_Mobile_Node>
PAINative: send, Data Length 190
P2PSServer: ------------------> init finished... waiting
PAINative: setNs2Node
P2PSClient: ------------------> Started: Locating SRSS nodes
PAINative: send, Host Address -2147483648
PAINative: send, Port 5555
PAINative: send, Data <?xml version="1.0" encoding="UTF-8"?>
<SRSS_Mobile_Node>

<query>true</query>
<advertId>Mobile Node</advertId>
<peerId></peerId>

</SRSS_Mobile_Node>
PAINative: send, Data Length 165
P2PSClient: Discovered a SRSS_Mobile_Node
P2PSClient: Advert class is a p2ps.impl.srss.SRSSQuery
PAINative: dataReceivedAtNativeSocket
PAINative: setNs2Node
PAINative: notifying Listeners
PAINative: setDatagramDetails
PAINative: setDatagramDetails: Port - 5555 address is 1
PAINative: recv, Host Address 1
PAINative: recv, Port 5555
PAINative: recv, Data <?xml version="1.0" encoding="UTF-8"?>
<SRSS_Mobile_Node>

<query>true</query>
<advertId>Mobile Node</advertId>
<peerId></peerId>

</SRSS_Mobile_Node>
PAINative: recv, Data Length 165
PAINative: setNs2Node
PAINative: dataReceivedAtNativeSocket
PAINative: setNs2Node
PAINative: notifying Listeners
PAINative: setDatagramDetails
PAINative: setDatagramDetails: Port - 5555 address is 0
PAINative: recv, Host Address 0

8.2. DISCOVERING NS2 NODES USING P2PS 115

PAINative: recv, Port 5555
PAINative: recv, Data <?xml version="1.0" encoding="UTF-8"?>
<SRSS_Mobile_Node>

<advertId>Mobile Node</advertId>
<peerId>0</peerId>
<STANDARD_UDP_PORT>3333</STANDARD_UDP_PORT>

</SRSS_Mobile_Node>
PAINative: recv, Data Length 190
P2PSClient: Discovered a SRSS_Mobile_Node
P2PSClient: Advert class is a p2ps.impl.srss.SRSSAdvert
P2PSClient: ------------------> Advert discovered: 0 3333
PAINative: send, Host Address 0
PAINative: send, Port 3333
PAINative: send, Data Hello Proteus
PAINative: send, Data Length 13
PAINative: setNs2Node
PAINative: dataReceivedAtNativeSocket
PAINative: setNs2Node
PAINative: notifying Listeners
Receiving ----------------------------
PAINative: setDatagramDetails
PAINative: setDatagramDetails: Port - 5555 address is 1
PAINative: recv, Host Address 1
PAINative: recv, Port 3333
PAINative: recv, Data Hello Proteus
PAINative: recv, Data Length 13
P2PSServer: Received Hello Proteus from 1 port: 3333
PAINative: setNs2Node
[Ian-Taylors-Computer:examples/pai/javaAgent] scmijt%

Here, you can see the kind of interaction happening within NS2. P2PS
is advertising and discovering several types of services dynamically behind-
the-scenes in order to detect the capabilities of the other P2PS nodes it is
communicating with. P2PS has to always quiz the resolvers of other P2PS
nodes to find out which endpoint protocols they are using so that they can
send the data in the appropriate manner.

The listing here illustrates these mechanisms and shows the SRSSAdvert
being discovered on the P2PS NS2 network binding. It then sets the param-
eters (i.e. the address and port number) and sends the data to the server
node. The server acknowledges receipt by printing out the message to the
screen.

116 CHAPTER 8. USING P2PS WITHIN JAVA AGENTS

8.3 Conclusion

In this chapter, a brief overview of the P2PS integration was given. We
then described, through the use of a discovery example, how P2PS could be
accessed and used within Ns2 and how the various P2PS services are invoked.
The example here, showed a simple decentralised discovery of a server from
a simple client application using the P2PS discovery capabilities. Once the
server had been discovered, the client used PAI to send data directly to
the server. Further, an example screen dump of a NS run was provided in
order to show the kinds of interactions taking place within this NS2 P2PS
implementation.

Bibliography

[1] The Ns2 Simulator, see http://www.isi.edu/nsnam/ns/

[2] The Java Home Page, see http://java.sun.com/

[3] The Java Tutorial: A practical guide for programmers,
http://java.sun.com/docs/books/tutorial/

[4] Jxta, see http://www.Jxta.org/

[5] The Gridlab Project, see http://www.gridlab.org/

[6] The GridOneD Project, see http://www.gridoned.org/

[7] Langley, A. The Trouble with JXTA, see
http://www.openp2p.com/pub/a/p2p/2001/05/02/jxta trouble.html

[8] P2PS, part of the the Triana Project, seehttp://www.trianacode.org/

[9] Part of the Protean project seeTODO

[10] The Jini web site: http://www.jini.org/

[11] Gamma E et al. Design Patterns: Elements of Reusable Object-
Oriented Software, 1994, publisher Addison-Wesley, ISBN: 0201633612

[12] UDDI Technical White Paper, UDDI.org, September 6, 2000, see web-
site http://www.uddi.org

[13] Web Services Invocation Framework (WSIF), see website
http://ws.apache.org/wsif/

117

Index

GAP Upperware, 4
GAT, 3

Java, 35
JNI, 6, 35
JXTA, 5

MANET, 1

NS2, 35
Ns2, 3

P2P Discovery, 3
P2PS, 5, 35
P2PS installation, 9
PAI, 35
PAI installation, 9
Protolib installation, 7

SRSS Group, 1

UDDI, 5

WSIF, 5

118

